Spaces:
Paused
Paused
# -*- coding: utf-8 -*- | |
import re | |
import six | |
import unicodedata | |
import torch | |
import rouge | |
import numpy as np | |
import random | |
# from fengshen.examples.pegasus.pegasus_utils import text_segmentate | |
import sys | |
sys.path.append('../../../') | |
rouge = rouge.Rouge() | |
is_py2 = six.PY2 | |
if not is_py2: | |
basestring = str | |
def _is_chinese_char(cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) | |
or (cp >= 0x20000 and cp <= 0x2A6DF) | |
or (cp >= 0x2A700 and cp <= 0x2B73F) | |
or (cp >= 0x2B740 and cp <= 0x2B81F) | |
or (cp >= 0x2B820 and cp <= 0x2CEAF) | |
or (cp >= 0xF900 and cp <= 0xFAFF) | |
or (cp >= 0x2F800 and cp <= 0x2FA1F)): | |
return True | |
return False | |
def _is_whitespace(char): | |
"""Checks whether `char` is a whitespace character.""" | |
# \t, \n, and \r are technically control characters but we treat them | |
# as whitespace since they are generally considered as such. | |
if char == " " or char == "\t" or char == "\n" or char == "\r": | |
return True | |
cat = unicodedata.category(char) | |
if cat == "Zs": | |
return True | |
return False | |
def _is_control(char): | |
"""Checks whether `char` is a control character.""" | |
# These are technically control characters but we count them as whitespace | |
# characters. | |
if char == "\t" or char == "\n" or char == "\r": | |
return False | |
cat = unicodedata.category(char) | |
if cat.startswith("C"): | |
return True | |
return False | |
def _is_punctuation(char): | |
"""Checks whether `char` is a punctuation character.""" | |
cp = ord(char) | |
# We treat all non-letter/number ASCII as punctuation. | |
# Characters such as "^", "$", and "`" are not in the Unicode | |
# Punctuation class but we treat them as punctuation anyways, for | |
# consistency. | |
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or ( | |
cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): | |
return True | |
cat = unicodedata.category(char) | |
if cat.startswith("P"): | |
return True | |
return False | |
def is_string(s): | |
"""判断是否是字符串 | |
""" | |
return isinstance(s, basestring) | |
def is_stopwords(word, stopwords): | |
if word in stopwords: | |
return True | |
else: | |
return False | |
def text_segmentate(text): | |
en_seg_pattern = '((?:\\!|\\?|\\.|\\n)+(?:\\s)+)' | |
ch_seg_pattern = '((?:?|!|。|\\n)+)' | |
try: | |
text = re.sub(en_seg_pattern, r'\1[SEP]', text) | |
# print("sub text: ", text) | |
except Exception as e: | |
print("input: ", text) | |
raise e | |
text = re.sub(ch_seg_pattern, r'\1[SEP]', text) | |
# print("sub ch text: ", text) | |
text_list = text.split("[SEP]") | |
text_list = list(filter(lambda x: len(x) != 0, text_list)) | |
return text_list | |
def load_stopwords(stopwords_path): | |
stopwords_dict = {} | |
with open(stopwords_path, "r") as rf: | |
for line in rf: | |
line = line.strip() | |
if line not in stopwords_dict: | |
stopwords_dict[line] = 0 | |
else: | |
pass | |
return stopwords_dict | |
def text_process(text, max_length): | |
"""分割文本 | |
""" | |
texts = text_segmentate(text) | |
result, length = [], 0 | |
for text in texts: | |
if length + len(text) > max_length * 1.3 and len(result) >= 3: | |
yield result | |
result, length = [], 0 | |
result.append(text) | |
length += len(text) | |
if result and len(result) >= 3: | |
yield result | |
def text_process_split_long_content(text, max_length): | |
"""分割长文本 | |
""" | |
texts = text_segmentate(text) | |
result, sentence_num = "", 0 | |
for text in texts: | |
if len(text) > 500: | |
if len(result) > 300 and sentence_num >= 3: | |
yield result | |
result, sentence_num = "", 0 | |
else: | |
result, sentence_num = "", 0 | |
continue | |
else: | |
if len(result) + len(text) > max_length * 1.1 and sentence_num >= 3: | |
yield result | |
result, sentence_num = "", 0 | |
result += text | |
sentence_num += 1 | |
if result and sentence_num >= 3: | |
yield result | |
def gather_join(texts, idxs): | |
"""取出对应的text,然后拼接起来 | |
""" | |
return ''.join([texts[i] for i in idxs]) | |
def gather_join_f1(texts_token, idsx): | |
join_texts = [] | |
for id in idsx: | |
join_texts.extend(texts_token[id]) | |
return join_texts | |
def compute_rouge(source, target): | |
"""计算rouge-1、rouge-2、rouge-l | |
""" | |
source, target = ' '.join(source), ' '.join(target) | |
try: | |
scores = rouge.get_scores(hyps=source, refs=target) | |
return { | |
'rouge-1': scores[0]['rouge-1']['f'], | |
'rouge-2': scores[0]['rouge-2']['f'], | |
'rouge-l': scores[0]['rouge-l']['f'], | |
} | |
except ValueError: | |
return { | |
'rouge-1': 0.0, | |
'rouge-2': 0.0, | |
'rouge-l': 0.0, | |
} | |
def remove_stopwords(texts, stopwords_dict): | |
for i, text in enumerate(texts): | |
texts[i] = list(filter(lambda x: x not in stopwords_dict, text)) | |
return texts | |
def pseudo_summary_f1(texts, | |
stopwords, | |
tokenizer, | |
max_length, | |
rouge_strategy="rouge-l"): | |
"""构建伪标签摘要数据集 | |
""" | |
summary_rate = 0.25 | |
max_length = max_length - 1 | |
texts_tokens = [] | |
sentece_idxs_vec = [] | |
for text in texts: | |
if len(texts) == 0: | |
continue | |
try: | |
ids = tokenizer.encode(text.strip())[:-1] | |
except ValueError: | |
print("error, input : ", text) | |
raise ValueError | |
sentece_idxs_vec.append(ids) | |
tokens = [tokenizer._convert_id_to_token(token) for token in ids] | |
texts_tokens.append(tokens) | |
texts_tokens_rm = remove_stopwords(texts_tokens, stopwords) | |
source_idxs, target_idxs = list(range(len(texts))), [] | |
assert len(texts_tokens) == len(texts) | |
# truncate_index = 0 | |
while True: | |
sims = [] | |
for i in source_idxs: | |
new_source_idxs = [j for j in source_idxs if j != i] | |
new_target_idxs = sorted(target_idxs + [i]) | |
new_source = gather_join_f1(texts_tokens_rm, new_source_idxs) | |
new_target = gather_join_f1(texts_tokens_rm, new_target_idxs) | |
sim = compute_rouge(new_source, new_target)[rouge_strategy] | |
sims.append(sim) | |
new_idx = source_idxs[np.argmax(sims)] | |
del sims | |
source_idxs.remove(new_idx) | |
target_idxs = sorted(target_idxs + [new_idx]) | |
source = gather_join(texts, source_idxs) | |
target = gather_join(texts, target_idxs) | |
try: | |
if (len(source_idxs) == 1 | |
or 1.0 * len(target) / len(source) > summary_rate): | |
break | |
except ZeroDivisionError as e: | |
print(e.meesage) | |
print(texts) | |
print("source: ", source) | |
print("target: ", target) | |
if len(source) < len(target): | |
source, target = target, source | |
source_idxs, target_idxs = target_idxs, source_idxs | |
return sentece_idxs_vec, source, target, source_idxs, target_idxs | |
def get_input_mask(sentence_id_vec, indexs): | |
target_idxs = [] | |
input_idxs = [] | |
kMaskSentenceTokenId = 2 | |
kEosTokenId = 1 | |
mask_sentence_options_cumulative_prob = [0.9, 0.9, 1, 1] | |
for index in indexs: | |
target_idxs.extend(sentence_id_vec[index]) | |
choice = random.uniform(0, 1) | |
if choice < mask_sentence_options_cumulative_prob[0]: | |
# print("mask index: ", index) | |
sentence_id_vec[index] = [kMaskSentenceTokenId] | |
elif choice < mask_sentence_options_cumulative_prob[1]: | |
# print("replace index: ", index) | |
replace_id = random.randint(0, len(sentence_id_vec)) | |
sentence_id_vec[index] = sentence_id_vec[replace_id] | |
elif choice < mask_sentence_options_cumulative_prob[2]: | |
pass | |
else: | |
sentence_id_vec[index] = [] | |
target_idxs.append(kEosTokenId) | |
# print(sentence_id_vec) | |
for index, sentence_id in enumerate(sentence_id_vec): | |
# print(index, sentence_id) | |
if len(sentence_id) == 0: | |
continue | |
input_idxs.extend(sentence_id_vec[index]) | |
input_idxs.append(kEosTokenId) | |
return input_idxs, target_idxs | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, | |
decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
def padding_to_maxlength(ids, max_length, pad_id): | |
cur_len = len(ids) | |
len_diff = max_length - cur_len | |
return ids + [pad_id] * len_diff, [1] * cur_len + [0] * len_diff | |