import os import argparse import copy import json from collections import defaultdict from surya.detection import batch_text_detection from surya.input.load import load_from_folder, load_from_file from surya.layout import batch_layout_detection from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.ordering.model import load_model from surya.model.ordering.processor import load_processor from surya.ordering import batch_ordering from surya.postprocessing.heatmap import draw_polys_on_image from surya.settings import settings def main(): parser = argparse.ArgumentParser(description="Find reading order of an input file or folder (PDFs or image).") parser.add_argument("input_path", type=str, help="Path to pdf or image file or folder to find reading order in.") parser.add_argument("--results_dir", type=str, help="Path to JSON file with layout results.", default=os.path.join(settings.RESULT_DIR, "surya")) parser.add_argument("--max", type=int, help="Maximum number of pages to process.", default=None) parser.add_argument("--images", action="store_true", help="Save images of detected layout bboxes.", default=False) args = parser.parse_args() model = load_model() processor = load_processor() layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) det_model = load_det_model() det_processor = load_det_processor() if os.path.isdir(args.input_path): images, names, _ = load_from_folder(args.input_path, args.max) folder_name = os.path.basename(args.input_path) else: images, names, _ = load_from_file(args.input_path, args.max) folder_name = os.path.basename(args.input_path).split(".")[0] line_predictions = batch_text_detection(images, det_model, det_processor) layout_predictions = batch_layout_detection(images, layout_model, layout_processor, line_predictions) bboxes = [] for layout_pred in layout_predictions: bbox = [l.bbox for l in layout_pred.bboxes] bboxes.append(bbox) order_predictions = batch_ordering(images, bboxes, model, processor) result_path = os.path.join(args.results_dir, folder_name) os.makedirs(result_path, exist_ok=True) if args.images: for idx, (image, layout_pred, order_pred, name) in enumerate(zip(images, layout_predictions, order_predictions, names)): polys = [l.polygon for l in order_pred.bboxes] labels = [str(l.position) for l in order_pred.bboxes] bbox_image = draw_polys_on_image(polys, copy.deepcopy(image), labels=labels, label_font_size=20) bbox_image.save(os.path.join(result_path, f"{name}_{idx}_order.png")) predictions_by_page = defaultdict(list) for idx, (layout_pred, pred, name, image) in enumerate(zip(layout_predictions, order_predictions, names, images)): out_pred = pred.model_dump() for bbox, layout_bbox in zip(out_pred["bboxes"], layout_pred.bboxes): bbox["label"] = layout_bbox.label out_pred["page"] = len(predictions_by_page[name]) + 1 predictions_by_page[name].append(out_pred) # Sort in reading order for name in predictions_by_page: for page_preds in predictions_by_page[name]: page_preds["bboxes"] = sorted(page_preds["bboxes"], key=lambda x: x["position"]) with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f: json.dump(predictions_by_page, f, ensure_ascii=False) print(f"Wrote results to {result_path}") if __name__ == "__main__": main()