import argparse import copy import json import time from collections import defaultdict from surya.input.load import load_from_folder, load_from_file from surya.model.detection.model import load_model, load_processor from surya.detection import batch_text_detection from surya.postprocessing.affinity import draw_lines_on_image from surya.postprocessing.heatmap import draw_polys_on_image from surya.settings import settings import os from tqdm import tqdm def main(): parser = argparse.ArgumentParser(description="Detect bboxes in an input file or folder (PDFs or image).") parser.add_argument("input_path", type=str, help="Path to pdf or image file or folder to detect bboxes in.") parser.add_argument("--results_dir", type=str, help="Path to JSON file with OCR results.", default=os.path.join(settings.RESULT_DIR, "surya")) parser.add_argument("--max", type=int, help="Maximum number of pages to process.", default=None) parser.add_argument("--images", action="store_true", help="Save images of detected bboxes.", default=False) parser.add_argument("--debug", action="store_true", help="Run in debug mode.", default=False) args = parser.parse_args() checkpoint = settings.DETECTOR_MODEL_CHECKPOINT model = load_model(checkpoint=checkpoint) processor = load_processor(checkpoint=checkpoint) if os.path.isdir(args.input_path): images, names, _ = load_from_folder(args.input_path, args.max) folder_name = os.path.basename(args.input_path) else: images, names, _ = load_from_file(args.input_path, args.max) folder_name = os.path.basename(args.input_path).split(".")[0] start = time.time() predictions = batch_text_detection(images, model, processor) result_path = os.path.join(args.results_dir, folder_name) os.makedirs(result_path, exist_ok=True) end = time.time() if args.debug: print(f"Detection took {end - start} seconds") if args.images: for idx, (image, pred, name) in enumerate(zip(images, predictions, names)): polygons = [p.polygon for p in pred.bboxes] bbox_image = draw_polys_on_image(polygons, copy.deepcopy(image)) bbox_image.save(os.path.join(result_path, f"{name}_{idx}_bbox.png")) column_image = draw_lines_on_image(pred.vertical_lines, copy.deepcopy(image)) column_image.save(os.path.join(result_path, f"{name}_{idx}_column.png")) if args.debug: heatmap = pred.heatmap heatmap.save(os.path.join(result_path, f"{name}_{idx}_heat.png")) affinity_map = pred.affinity_map affinity_map.save(os.path.join(result_path, f"{name}_{idx}_affinity.png")) predictions_by_page = defaultdict(list) for idx, (pred, name, image) in enumerate(zip(predictions, names, images)): out_pred = pred.model_dump(exclude=["heatmap", "affinity_map"]) out_pred["page"] = len(predictions_by_page[name]) + 1 predictions_by_page[name].append(out_pred) with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f: json.dump(predictions_by_page, f, ensure_ascii=False) print(f"Wrote results to {result_path}") if __name__ == "__main__": main()