import pypdfium2 # Causes a warning if not the top import import argparse import copy import json from collections import defaultdict from surya.detection import batch_text_detection from surya.input.load import load_from_folder, load_from_file from surya.layout import batch_layout_detection from surya.model.detection.model import load_model, load_processor from surya.postprocessing.heatmap import draw_polys_on_image from surya.settings import settings import os def main(): parser = argparse.ArgumentParser(description="Detect layout of an input file or folder (PDFs or image).") parser.add_argument("input_path", type=str, help="Path to pdf or image file or folder to detect layout in.") parser.add_argument("--results_dir", type=str, help="Path to JSON file with layout results.", default=os.path.join(settings.RESULT_DIR, "surya")) parser.add_argument("--max", type=int, help="Maximum number of pages to process.", default=None) parser.add_argument("--images", action="store_true", help="Save images of detected layout bboxes.", default=False) parser.add_argument("--debug", action="store_true", help="Run in debug mode.", default=False) args = parser.parse_args() model = load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) processor = load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) det_model = load_model() det_processor = load_processor() if os.path.isdir(args.input_path): images, names, _ = load_from_folder(args.input_path, args.max) folder_name = os.path.basename(args.input_path) else: images, names, _ = load_from_file(args.input_path, args.max) folder_name = os.path.basename(args.input_path).split(".")[0] line_predictions = batch_text_detection(images, det_model, det_processor) layout_predictions = batch_layout_detection(images, model, processor, line_predictions) result_path = os.path.join(args.results_dir, folder_name) os.makedirs(result_path, exist_ok=True) if args.images: for idx, (image, layout_pred, name) in enumerate(zip(images, layout_predictions, names)): polygons = [p.polygon for p in layout_pred.bboxes] labels = [p.label for p in layout_pred.bboxes] bbox_image = draw_polys_on_image(polygons, copy.deepcopy(image), labels=labels) bbox_image.save(os.path.join(result_path, f"{name}_{idx}_layout.png")) if args.debug: heatmap = layout_pred.segmentation_map heatmap.save(os.path.join(result_path, f"{name}_{idx}_segmentation.png")) predictions_by_page = defaultdict(list) for idx, (pred, name, image) in enumerate(zip(layout_predictions, names, images)): out_pred = pred.model_dump(exclude=["segmentation_map"]) out_pred["page"] = len(predictions_by_page[name]) + 1 predictions_by_page[name].append(out_pred) with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f: json.dump(predictions_by_page, f, ensure_ascii=False) print(f"Wrote results to {result_path}") if __name__ == "__main__": main()