import pypdfium2 as pdfium # Needs to be on top to avoid warning import os import argparse import copy import json from collections import defaultdict from surya.detection import batch_text_detection from surya.input.load import load_from_folder, load_from_file from surya.input.pdflines import get_table_blocks from surya.layout import batch_layout_detection from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.table_rec.model import load_model as load_model from surya.model.table_rec.processor import load_processor from surya.tables import batch_table_recognition from surya.postprocessing.heatmap import draw_bboxes_on_image from surya.settings import settings from surya.postprocessing.util import rescale_bboxes, rescale_bbox def main(): parser = argparse.ArgumentParser(description="Find reading order of an input file or folder (PDFs or image).") parser.add_argument("input_path", type=str, help="Path to pdf or image file or folder to find reading order in.") parser.add_argument("--results_dir", type=str, help="Path to JSON file with layout results.", default=os.path.join(settings.RESULT_DIR, "surya")) parser.add_argument("--max", type=int, help="Maximum number of pages to process.", default=None) parser.add_argument("--images", action="store_true", help="Save images of detected layout bboxes.", default=False) parser.add_argument("--detect_boxes", action="store_true", help="Detect table boxes.", default=False) parser.add_argument("--skip_table_detection", action="store_true", help="Tables are already cropped, so don't re-detect tables.", default=False) args = parser.parse_args() model = load_model() processor = load_processor() layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) det_model = load_det_model() det_processor = load_det_processor() if os.path.isdir(args.input_path): images, _, _ = load_from_folder(args.input_path, args.max) highres_images, names, text_lines = load_from_folder(args.input_path, args.max, dpi=settings.IMAGE_DPI_HIGHRES, load_text_lines=True) folder_name = os.path.basename(args.input_path) else: images, _, _ = load_from_file(args.input_path, args.max) highres_images, names, text_lines = load_from_file(args.input_path, args.max, dpi=settings.IMAGE_DPI_HIGHRES, load_text_lines=True) folder_name = os.path.basename(args.input_path).split(".")[0] pnums = [] prev_name = None for i, name in enumerate(names): if prev_name is None or prev_name != name: pnums.append(0) else: pnums.append(pnums[-1] + 1) prev_name = name line_predictions = batch_text_detection(images, det_model, det_processor) layout_predictions = batch_layout_detection(images, layout_model, layout_processor, line_predictions) table_cells = [] table_imgs = [] table_counts = [] for layout_pred, text_line, img, highres_img in zip(layout_predictions, text_lines, images, highres_images): # The table may already be cropped if args.skip_table_detection: table_imgs.append(highres_img) table_counts.append(1) page_table_imgs = [highres_img] highres_bbox = [[0, 0, highres_img.size[0], highres_img.size[1]]] else: # The bbox for the entire table bbox = [l.bbox for l in layout_pred.bboxes if l.label == "Table"] # Number of tables per page table_counts.append(len(bbox)) if len(bbox) == 0: continue page_table_imgs = [] highres_bbox = [] for bb in bbox: highres_bb = rescale_bbox(bb, img.size, highres_img.size) page_table_imgs.append(highres_img.crop(highres_bb)) highres_bbox.append(highres_bb) table_imgs.extend(page_table_imgs) # The text cells inside each table table_blocks = get_table_blocks(highres_bbox, text_line, highres_img.size) if text_line is not None else None if text_line is None or args.detect_boxes or any(len(tb) == 0 for tb in table_blocks): det_results = batch_text_detection(page_table_imgs, det_model, det_processor,) cell_bboxes = [[{"bbox": tb.bbox, "text": None} for tb in det_result.bboxes] for det_result in det_results] table_cells.extend(cell_bboxes) else: table_cells.extend(table_blocks) table_preds = batch_table_recognition(table_imgs, table_cells, model, processor) result_path = os.path.join(args.results_dir, folder_name) os.makedirs(result_path, exist_ok=True) img_idx = 0 prev_count = 0 table_predictions = defaultdict(list) for i in range(sum(table_counts)): while i >= prev_count + table_counts[img_idx]: prev_count += table_counts[img_idx] img_idx += 1 pred = table_preds[i] orig_name = names[img_idx] pnum = pnums[img_idx] table_img = table_imgs[i] out_pred = pred.model_dump() out_pred["page"] = pnum + 1 table_idx = i - prev_count out_pred["table_idx"] = table_idx table_predictions[orig_name].append(out_pred) if args.images: boxes = [l.bbox for l in pred.cells] labels = [f"{l.row_id}/{l.col_id}" for l in pred.cells] bbox_image = draw_bboxes_on_image(boxes, copy.deepcopy(table_img), labels=labels, label_font_size=20) bbox_image.save(os.path.join(result_path, f"{name}_page{pnum + 1}_table{table_idx}_cells.png")) rows = [l.bbox for l in pred.rows] cols = [l.bbox for l in pred.cols] row_labels = [f"Row {l.row_id}" for l in pred.rows] col_labels = [f"Col {l.col_id}" for l in pred.cols] rc_image = copy.deepcopy(table_img) rc_image = draw_bboxes_on_image(rows, rc_image, labels=row_labels, label_font_size=20, color="blue") rc_image = draw_bboxes_on_image(cols, rc_image, labels=col_labels, label_font_size=20, color="red") rc_image.save(os.path.join(result_path, f"{name}_page{pnum + 1}_table{table_idx}_rc.png")) with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f: json.dump(table_predictions, f, ensure_ascii=False) print(f"Wrote results to {result_path}") if __name__ == "__main__": main()