from typing import Dict, Optional from dotenv import find_dotenv from pydantic import computed_field from pydantic_settings import BaseSettings import torch import os class Settings(BaseSettings): # General TORCH_DEVICE: Optional[str] = None IMAGE_DPI: int = 96 # Used for detection, layout, reading order IMAGE_DPI_HIGHRES: int = 192 # Used for OCR, table rec IN_STREAMLIT: bool = False # Whether we're running in streamlit ENABLE_EFFICIENT_ATTENTION: bool = True # Usually keep True, but if you get CUDA errors, setting to False can help # Paths DATA_DIR: str = "data" RESULT_DIR: str = "results" BASE_DIR: str = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) FONT_DIR: str = os.path.join(BASE_DIR, "static", "fonts") @computed_field def TORCH_DEVICE_MODEL(self) -> str: if self.TORCH_DEVICE is not None: return self.TORCH_DEVICE if torch.cuda.is_available(): return "cuda" if torch.backends.mps.is_available(): return "mps" return "cpu" # Text detection DETECTOR_BATCH_SIZE: Optional[int] = None # Defaults to 2 for CPU/MPS, 32 otherwise DETECTOR_MODEL_CHECKPOINT: str = "vikp/surya_det3" DETECTOR_BENCH_DATASET_NAME: str = "vikp/doclaynet_bench" DETECTOR_IMAGE_CHUNK_HEIGHT: int = 1400 # Height at which to slice images vertically DETECTOR_TEXT_THRESHOLD: float = 0.6 # Threshold for text detection (above this is considered text) DETECTOR_BLANK_THRESHOLD: float = 0.35 # Threshold for blank space (below this is considered blank) DETECTOR_POSTPROCESSING_CPU_WORKERS: int = min(8, os.cpu_count()) # Number of workers for postprocessing DETECTOR_MIN_PARALLEL_THRESH: int = 3 # Minimum number of images before we parallelize # Text recognition RECOGNITION_MODEL_CHECKPOINT: str = "vikp/surya_rec2" RECOGNITION_MAX_TOKENS: int = 175 RECOGNITION_BATCH_SIZE: Optional[int] = None # Defaults to 8 for CPU/MPS, 256 otherwise RECOGNITION_IMAGE_SIZE: Dict = {"height": 256, "width": 896} RECOGNITION_RENDER_FONTS: Dict[str, str] = { "all": os.path.join(FONT_DIR, "GoNotoCurrent-Regular.ttf"), "zh": os.path.join(FONT_DIR, "GoNotoCJKCore.ttf"), "ja": os.path.join(FONT_DIR, "GoNotoCJKCore.ttf"), "ko": os.path.join(FONT_DIR, "GoNotoCJKCore.ttf"), } RECOGNITION_FONT_DL_BASE: str = "https://github.com/satbyy/go-noto-universal/releases/download/v7.0" RECOGNITION_BENCH_DATASET_NAME: str = "vikp/rec_bench" RECOGNITION_PAD_VALUE: int = 255 # Should be 0 or 255 RECOGNITION_STATIC_CACHE: bool = False # Static cache for torch compile RECOGNITION_ENCODER_BATCH_DIVISOR: int = 2 # Divisor for batch size in decoder # Layout LAYOUT_MODEL_CHECKPOINT: str = "vikp/surya_layout3" LAYOUT_BENCH_DATASET_NAME: str = "vikp/publaynet_bench" # Ordering ORDER_MODEL_CHECKPOINT: str = "vikp/surya_order" ORDER_IMAGE_SIZE: Dict = {"height": 1024, "width": 1024} ORDER_MAX_BOXES: int = 256 ORDER_BATCH_SIZE: Optional[int] = None # Defaults to 4 for CPU/MPS, 32 otherwise ORDER_BENCH_DATASET_NAME: str = "vikp/order_bench" # Table Rec TABLE_REC_MODEL_CHECKPOINT: str = "vikp/surya_tablerec" TABLE_REC_IMAGE_SIZE: Dict = {"height": 640, "width": 640} TABLE_REC_MAX_BOXES: int = 512 TABLE_REC_MAX_ROWS: int = 384 TABLE_REC_BATCH_SIZE: Optional[int] = None TABLE_REC_BENCH_DATASET_NAME: str = "vikp/fintabnet_bench" # Tesseract (for benchmarks only) TESSDATA_PREFIX: Optional[str] = None @computed_field @property def MODEL_DTYPE(self) -> torch.dtype: return torch.float32 if self.TORCH_DEVICE_MODEL == "cpu" else torch.float16 class Config: env_file = find_dotenv("local.env") extra = "ignore" settings = Settings()