SuryaOCR / surya /tables.py
Jiangxz01's picture
Upload 56 files
52f1bcb verified
raw
history blame
10.9 kB
from collections import defaultdict
from copy import deepcopy
from typing import List, Dict
import torch
from PIL import Image
from surya.model.ordering.encoderdecoder import OrderVisionEncoderDecoderModel
from surya.schema import TableResult, TableCell, Bbox
from surya.settings import settings
from tqdm import tqdm
import numpy as np
from surya.model.table_rec.config import SPECIAL_TOKENS
def get_batch_size():
batch_size = settings.TABLE_REC_BATCH_SIZE
if batch_size is None:
batch_size = 8
if settings.TORCH_DEVICE_MODEL == "mps":
batch_size = 8
if settings.TORCH_DEVICE_MODEL == "cuda":
batch_size = 64
return batch_size
def sort_bboxes(bboxes, tolerance=1):
vertical_groups = {}
for block in bboxes:
group_key = round(block["bbox"][1] / tolerance) * tolerance
if group_key not in vertical_groups:
vertical_groups[group_key] = []
vertical_groups[group_key].append(block)
# Sort each group horizontally and flatten the groups into a single list
sorted_page_blocks = []
for _, group in sorted(vertical_groups.items()):
sorted_group = sorted(group, key=lambda x: x["bbox"][0])
sorted_page_blocks.extend(sorted_group)
return sorted_page_blocks
def is_rotated(rows, cols):
# Determine if the table is rotated by looking at row and column width / height ratios
# Rows should have a >1 ratio, cols <1
widths = sum([r.width for r in rows])
heights = sum([c.height for c in rows]) + 1
r_ratio = widths / heights
widths = sum([c.width for c in cols])
heights = sum([r.height for r in cols]) + 1
c_ratio = widths / heights
return r_ratio * 2 < c_ratio
def batch_table_recognition(images: List, table_cells: List[List[Dict]], model: OrderVisionEncoderDecoderModel, processor, batch_size=None) -> List[TableResult]:
assert all([isinstance(image, Image.Image) for image in images])
assert len(images) == len(table_cells)
if batch_size is None:
batch_size = get_batch_size()
output_order = []
for i in tqdm(range(0, len(images), batch_size), desc="Recognizing tables"):
batch_table_cells = deepcopy(table_cells[i:i+batch_size])
batch_table_cells = [sort_bboxes(page_bboxes) for page_bboxes in batch_table_cells] # Sort bboxes before passing in
batch_list_bboxes = [[block["bbox"] for block in page] for page in batch_table_cells]
batch_images = images[i:i+batch_size]
batch_images = [image.convert("RGB") for image in batch_images] # also copies the images
current_batch_size = len(batch_images)
orig_sizes = [image.size for image in batch_images]
model_inputs = processor(images=batch_images, boxes=deepcopy(batch_list_bboxes))
batch_pixel_values = model_inputs["pixel_values"]
batch_bboxes = model_inputs["input_boxes"]
batch_bbox_mask = model_inputs["input_boxes_mask"]
batch_bbox_counts = model_inputs["input_boxes_counts"]
batch_bboxes = torch.from_numpy(np.array(batch_bboxes, dtype=np.int32)).to(model.device)
batch_bbox_mask = torch.from_numpy(np.array(batch_bbox_mask, dtype=np.int32)).to(model.device)
batch_pixel_values = torch.tensor(np.array(batch_pixel_values), dtype=model.dtype).to(model.device)
batch_bbox_counts = torch.tensor(np.array(batch_bbox_counts), dtype=torch.long).to(model.device)
# Setup inputs for the decoder
batch_decoder_input = [[[model.config.decoder.bos_token_id] * 5] for _ in range(current_batch_size)]
batch_decoder_input = torch.tensor(np.stack(batch_decoder_input, axis=0), dtype=torch.long, device=model.device)
inference_token_count = batch_decoder_input.shape[1]
max_tokens = min(batch_bbox_counts[:, 1].max().item(), settings.TABLE_REC_MAX_BOXES)
decoder_position_ids = torch.ones_like(batch_decoder_input[0, :, 0], dtype=torch.int64, device=model.device).cumsum(0) - 1
model.decoder.model._setup_cache(model.config, batch_size, model.device, model.dtype)
model.text_encoder.model._setup_cache(model.config, batch_size, model.device, model.dtype)
batch_predictions = [[] for _ in range(current_batch_size)]
with torch.inference_mode():
encoder_hidden_states = model.encoder(pixel_values=batch_pixel_values).last_hidden_state
text_encoder_hidden_states = model.text_encoder(
input_boxes=batch_bboxes,
input_boxes_counts=batch_bbox_counts,
cache_position=None,
attention_mask=batch_bbox_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=None,
use_cache=False
).hidden_states
token_count = 0
all_done = torch.zeros(current_batch_size, dtype=torch.bool, device=model.device)
while token_count < max_tokens:
is_prefill = token_count == 0
return_dict = model.decoder(
input_ids=batch_decoder_input,
encoder_hidden_states=text_encoder_hidden_states,
cache_position=decoder_position_ids,
use_cache=True,
prefill=is_prefill
)
decoder_position_ids = decoder_position_ids[-1:] + 1
box_logits = return_dict["bbox_logits"][:, -1, :].detach()
rowcol_logits = return_dict["class_logits"][:, -1, :].detach()
rowcol_preds = torch.argmax(rowcol_logits, dim=-1)
box_preds = torch.argmax(box_logits, dim=-1)
done = (rowcol_preds == processor.tokenizer.eos_id) | (rowcol_preds == processor.tokenizer.pad_id)
done = done
all_done = all_done | done
if all_done.all():
break
batch_decoder_input = torch.cat([box_preds.unsqueeze(1), rowcol_preds.unsqueeze(1).unsqueeze(1)], dim=-1)
for j, (pred, status) in enumerate(zip(batch_decoder_input, all_done)):
if not status:
batch_predictions[j].append(pred[0].tolist())
token_count += inference_token_count
inference_token_count = batch_decoder_input.shape[1]
for j, (preds, input_cells, orig_size) in enumerate(zip(batch_predictions, batch_table_cells, orig_sizes)):
img_w, img_h = orig_size
width_scaler = img_w / model.config.decoder.out_box_size
height_scaler = img_h / model.config.decoder.out_box_size
# cx, cy to corners
for i, pred in enumerate(preds):
w = pred[2] / 2
h = pred[3] / 2
x1 = pred[0] - w
y1 = pred[1] - h
x2 = pred[0] + w
y2 = pred[1] + h
class_ = int(pred[4] - SPECIAL_TOKENS)
preds[i] = [x1 * width_scaler, y1 * height_scaler, x2 * width_scaler, y2 * height_scaler, class_]
# Get rows and columns
bb_rows = [p[:4] for p in preds if p[4] == 0]
bb_cols = [p[:4] for p in preds if p[4] == 1]
rows = []
cols = []
for row_idx, row in enumerate(bb_rows):
cell = TableCell(
bbox=row,
row_id=row_idx
)
rows.append(cell)
for col_idx, col in enumerate(bb_cols):
cell = TableCell(
bbox=col,
col_id=col_idx,
)
cols.append(cell)
# Assign cells to rows/columns
cells = []
for cell in input_cells:
max_intersection = 0
row_pred = None
for row_idx, row in enumerate(rows):
intersection_pct = Bbox(bbox=cell["bbox"]).intersection_pct(row)
if intersection_pct > max_intersection:
max_intersection = intersection_pct
row_pred = row_idx
max_intersection = 0
col_pred = None
for col_idx, col in enumerate(cols):
intersection_pct = Bbox(bbox=cell["bbox"]).intersection_pct(col)
if intersection_pct > max_intersection:
max_intersection = intersection_pct
col_pred = col_idx
cells.append(
TableCell(
bbox=cell["bbox"],
text=cell.get("text"),
row_id=row_pred,
col_id=col_pred
)
)
rotated = is_rotated(rows, cols)
for cell in cells:
if cell.row_id is None:
closest_row = None
closest_row_dist = None
for cell2 in cells:
if cell2.row_id is None:
continue
if rotated:
cell_y_center = cell.center[0]
cell2_y_center = cell2.center[0]
else:
cell_y_center = cell.center[1]
cell2_y_center = cell2.center[1]
y_dist = abs(cell_y_center - cell2_y_center)
if closest_row_dist is None or y_dist < closest_row_dist:
closest_row = cell2.row_id
closest_row_dist = y_dist
cell.row_id = closest_row
if cell.col_id is None:
closest_col = None
closest_col_dist = None
for cell2 in cells:
if cell2.col_id is None:
continue
if rotated:
cell_x_center = cell.center[1]
cell2_x_center = cell2.center[1]
else:
cell_x_center = cell.center[0]
cell2_x_center = cell2.center[0]
x_dist = abs(cell2_x_center - cell_x_center)
if closest_col_dist is None or x_dist < closest_col_dist:
closest_col = cell2.col_id
closest_col_dist = x_dist
cell.col_id = closest_col
result = TableResult(
cells=cells,
rows=rows,
cols=cols,
image_bbox=[0, 0, img_w, img_h],
)
output_order.append(result)
return output_order