Spaces:
Running
Running
from typing import List | |
import cv2 | |
import numpy as np | |
import math | |
import pypdfium2 | |
from PIL import Image, ImageOps, ImageDraw | |
import torch | |
from surya.settings import settings | |
def convert_if_not_rgb(images: List[Image.Image]) -> List[Image.Image]: | |
new_images = [] | |
for image in images: | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
new_images.append(image) | |
return new_images | |
def get_total_splits(image_size, processor): | |
img_height = list(image_size)[1] | |
max_height = settings.DETECTOR_IMAGE_CHUNK_HEIGHT | |
processor_height = processor.size["height"] | |
if img_height > max_height: | |
num_splits = math.ceil(img_height / processor_height) | |
return num_splits | |
return 1 | |
def split_image(img, processor): | |
# This will not modify/return the original image - it will either crop, or copy the image | |
img_height = list(img.size)[1] | |
max_height = settings.DETECTOR_IMAGE_CHUNK_HEIGHT | |
processor_height = processor.size["height"] | |
if img_height > max_height: | |
num_splits = math.ceil(img_height / processor_height) | |
splits = [] | |
split_heights = [] | |
for i in range(num_splits): | |
top = i * processor_height | |
bottom = (i + 1) * processor_height | |
if bottom > img_height: | |
bottom = img_height | |
cropped = img.crop((0, top, img.size[0], bottom)) | |
height = bottom - top | |
if height < processor_height: | |
cropped = ImageOps.pad(cropped, (img.size[0], processor_height), color=255, centering=(0, 0)) | |
splits.append(cropped) | |
split_heights.append(height) | |
return splits, split_heights | |
return [img.copy()], [img_height] | |
def prepare_image_detection(img, processor): | |
new_size = (processor.size["width"], processor.size["height"]) | |
# This double resize actually necessary for downstream accuracy | |
img.thumbnail(new_size, Image.Resampling.LANCZOS) | |
img = img.resize(new_size, Image.Resampling.LANCZOS) # Stretch smaller dimension to fit new size | |
img = np.asarray(img, dtype=np.uint8) | |
img = processor(img)["pixel_values"][0] | |
img = torch.from_numpy(img) | |
return img | |
def open_pdf(pdf_filepath): | |
return pypdfium2.PdfDocument(pdf_filepath) | |
def get_page_images(doc, indices: List, dpi=settings.IMAGE_DPI): | |
renderer = doc.render( | |
pypdfium2.PdfBitmap.to_pil, | |
page_indices=indices, | |
scale=dpi / 72, | |
) | |
images = list(renderer) | |
images = [image.convert("RGB") for image in images] | |
return images | |
def slice_bboxes_from_image(image: Image.Image, bboxes): | |
lines = [] | |
for bbox in bboxes: | |
line = image.crop((bbox[0], bbox[1], bbox[2], bbox[3])) | |
if line.size[0] == 0: | |
print(f"Warning: found an empty line with bbox {bbox}") | |
lines.append(line) | |
return lines | |
def slice_polys_from_image(image: Image.Image, polys): | |
image_array = np.array(image, dtype=np.uint8) | |
lines = [] | |
for idx, poly in enumerate(polys): | |
lines.append(slice_and_pad_poly(image_array, poly)) | |
return lines | |
def slice_and_pad_poly(image_array: np.array, coordinates): | |
# Draw polygon onto mask | |
coordinates = [(corner[0], corner[1]) for corner in coordinates] | |
bbox = [min([x[0] for x in coordinates]), min([x[1] for x in coordinates]), max([x[0] for x in coordinates]), max([x[1] for x in coordinates])] | |
# We mask out anything not in the polygon | |
cropped_polygon = image_array[bbox[1]:bbox[3], bbox[0]:bbox[2]].copy() | |
coordinates = [(x - bbox[0], y - bbox[1]) for x, y in coordinates] | |
# Pad the area outside the polygon with the pad value | |
mask = np.zeros(cropped_polygon.shape[:2], dtype=np.uint8) | |
cv2.fillPoly(mask, [np.int32(coordinates)], 1) | |
mask = np.stack([mask] * 3, axis=-1) | |
cropped_polygon[mask == 0] = settings.RECOGNITION_PAD_VALUE | |
rectangle_image = Image.fromarray(cropped_polygon) | |
return rectangle_image | |