Spaces:
Running
Running
import io | |
from typing import List | |
import pypdfium2 | |
import streamlit as st | |
from pypdfium2 import PdfiumError | |
from surya.detection import batch_text_detection | |
from surya.input.pdflines import get_page_text_lines, get_table_blocks | |
from surya.layout import batch_layout_detection | |
from surya.model.detection.model import load_model, load_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from surya.model.ordering.processor import load_processor as load_order_processor | |
from surya.model.ordering.model import load_model as load_order_model | |
from surya.model.table_rec.model import load_model as load_table_model | |
from surya.model.table_rec.processor import load_processor as load_table_processor | |
from surya.ordering import batch_ordering | |
from surya.postprocessing.heatmap import draw_polys_on_image, draw_bboxes_on_image | |
from surya.ocr import run_ocr | |
from surya.postprocessing.text import draw_text_on_image | |
from PIL import Image | |
from surya.languages import CODE_TO_LANGUAGE | |
from surya.input.langs import replace_lang_with_code | |
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult, TableResult | |
from surya.settings import settings | |
from surya.tables import batch_table_recognition | |
from surya.postprocessing.util import rescale_bboxes, rescale_bbox | |
def load_det_cached(): | |
checkpoint = settings.DETECTOR_MODEL_CHECKPOINT | |
return load_model(checkpoint=checkpoint), load_processor(checkpoint=checkpoint) | |
def load_rec_cached(): | |
return load_rec_model(), load_rec_processor() | |
def load_layout_cached(): | |
return load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT), load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
def load_order_cached(): | |
return load_order_model(), load_order_processor() | |
def load_table_cached(): | |
return load_table_model(), load_table_processor() | |
def text_detection(img) -> (Image.Image, TextDetectionResult): | |
pred = batch_text_detection([img], det_model, det_processor)[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
det_img = draw_polys_on_image(polygons, img.copy()) | |
return det_img, pred | |
def layout_detection(img) -> (Image.Image, LayoutResult): | |
_, det_pred = text_detection(img) | |
pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
labels = [p.label for p in pred.bboxes] | |
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels, label_font_size=18) | |
return layout_img, pred | |
def order_detection(img) -> (Image.Image, OrderResult): | |
_, layout_pred = layout_detection(img) | |
bboxes = [l.bbox for l in layout_pred.bboxes] | |
pred = batch_ordering([img], [bboxes], order_model, order_processor)[0] | |
polys = [l.polygon for l in pred.bboxes] | |
positions = [str(l.position) for l in pred.bboxes] | |
order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=18) | |
return order_img, pred | |
def table_recognition(img, highres_img, filepath, page_idx: int, use_pdf_boxes: bool, skip_table_detection: bool) -> (Image.Image, List[TableResult]): | |
if skip_table_detection: | |
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])] | |
table_imgs = [highres_img] | |
else: | |
_, layout_pred = layout_detection(img) | |
layout_tables_lowres = [l.bbox for l in layout_pred.bboxes if l.label == "Table"] | |
table_imgs = [] | |
layout_tables = [] | |
for tb in layout_tables_lowres: | |
highres_bbox = rescale_bbox(tb, img.size, highres_img.size) | |
table_imgs.append( | |
highres_img.crop(highres_bbox) | |
) | |
layout_tables.append(highres_bbox) | |
try: | |
page_text = get_page_text_lines(filepath, [page_idx], [highres_img.size])[0] | |
table_bboxes = get_table_blocks(layout_tables, page_text, highres_img.size) | |
except PdfiumError: | |
# This happens when we try to get text from an image | |
table_bboxes = [[] for _ in layout_tables] | |
if not use_pdf_boxes or any(len(tb) == 0 for tb in table_bboxes): | |
det_results = batch_text_detection(table_imgs, det_model, det_processor) | |
table_bboxes = [[{"bbox": tb.bbox, "text": None} for tb in det_result.bboxes] for det_result in det_results] | |
table_preds = batch_table_recognition(table_imgs, table_bboxes, table_model, table_processor) | |
table_img = img.copy() | |
for results, table_bbox in zip(table_preds, layout_tables): | |
adjusted_bboxes = [] | |
labels = [] | |
for item in results.cells: | |
adjusted_bboxes.append([ | |
(item.bbox[0] + table_bbox[0]), | |
(item.bbox[1] + table_bbox[1]), | |
(item.bbox[2] + table_bbox[0]), | |
(item.bbox[3] + table_bbox[1]) | |
]) | |
labels.append(f"{item.row_id} / {item.col_id}") | |
table_img = draw_bboxes_on_image(adjusted_bboxes, highres_img, labels=labels, label_font_size=18) | |
return table_img, table_preds | |
# Function for OCR | |
def ocr(img, highres_img, langs: List[str]) -> (Image.Image, OCRResult): | |
replace_lang_with_code(langs) | |
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor, highres_images=[highres_img])[0] | |
bboxes = [l.bbox for l in img_pred.text_lines] | |
text = [l.text for l in img_pred.text_lines] | |
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs) | |
return rec_img, img_pred | |
def open_pdf(pdf_file): | |
stream = io.BytesIO(pdf_file.getvalue()) | |
return pypdfium2.PdfDocument(stream) | |
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI): | |
doc = open_pdf(pdf_file) | |
renderer = doc.render( | |
pypdfium2.PdfBitmap.to_pil, | |
page_indices=[page_num - 1], | |
scale=dpi / 72, | |
) | |
png = list(renderer)[0] | |
png_image = png.convert("RGB") | |
return png_image | |
def page_count(pdf_file): | |
doc = open_pdf(pdf_file) | |
return len(doc) | |
st.set_page_config(layout="wide") | |
col1, col2 = st.columns([.5, .5]) | |
det_model, det_processor = load_det_cached() | |
rec_model, rec_processor = load_rec_cached() | |
layout_model, layout_processor = load_layout_cached() | |
order_model, order_processor = load_order_cached() | |
table_model, table_processor = load_table_cached() | |
st.markdown(""" | |
# Surya OCR Demo | |
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. | |
Notes: | |
- This works best on documents with printed text. | |
- Preprocessing the image (e.g. increasing contrast) can improve results. | |
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). | |
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. | |
Find the project [here](https://github.com/VikParuchuri/surya). | |
""") | |
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) | |
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=[], max_selections=4, help="Select the languages in the image (if known) to improve OCR accuracy. Optional.") | |
if in_file is None: | |
st.stop() | |
filetype = in_file.type | |
whole_image = False | |
if "pdf" in filetype: | |
page_count = page_count(in_file) | |
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count) | |
pil_image = get_page_image(in_file, page_number, settings.IMAGE_DPI) | |
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) | |
else: | |
pil_image = Image.open(in_file).convert("RGB") | |
pil_image_highres = pil_image | |
page_number = None | |
text_det = st.sidebar.button("Run Text Detection") | |
text_rec = st.sidebar.button("Run OCR") | |
layout_det = st.sidebar.button("Run Layout Analysis") | |
order_det = st.sidebar.button("Run Reading Order") | |
table_rec = st.sidebar.button("Run Table Rec") | |
use_pdf_boxes = st.sidebar.checkbox("PDF table boxes", value=True, help="Table recognition only: Use the bounding boxes from the PDF file vs text detection model.") | |
skip_table_detection = st.sidebar.checkbox("Skip table detection", value=False, help="Table recognition only: Skip table detection and treat the whole image/page as a table.") | |
if pil_image is None: | |
st.stop() | |
# Run Text Detection | |
if text_det: | |
det_img, pred = text_detection(pil_image) | |
with col1: | |
st.image(det_img, caption="Detected Text", use_column_width=True) | |
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True) | |
# Run layout | |
if layout_det: | |
layout_img, pred = layout_detection(pil_image) | |
with col1: | |
st.image(layout_img, caption="Detected Layout", use_column_width=True) | |
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True) | |
# Run OCR | |
if text_rec: | |
rec_img, pred = ocr(pil_image, pil_image_highres, languages) | |
with col1: | |
st.image(rec_img, caption="OCR Result", use_column_width=True) | |
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"]) | |
with json_tab: | |
st.json(pred.model_dump(), expanded=True) | |
with text_tab: | |
st.text("\n".join([p.text for p in pred.text_lines])) | |
if order_det: | |
order_img, pred = order_detection(pil_image) | |
with col1: | |
st.image(order_img, caption="Reading Order", use_column_width=True) | |
st.json(pred.model_dump(), expanded=True) | |
if table_rec: | |
table_img, pred = table_recognition(pil_image, pil_image_highres, in_file, page_number - 1 if page_number else None, use_pdf_boxes, skip_table_detection) | |
with col1: | |
st.image(table_img, caption="Table Recognition", use_column_width=True) | |
st.json([p.model_dump() for p in pred], expanded=True) | |
with col2: | |
st.image(pil_image, caption="Uploaded Image", use_column_width=True) |