File size: 7,715 Bytes
52f1bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from typing import List, Tuple

import numpy as np
import cv2
import math
from PIL import ImageDraw, ImageFont

from surya.postprocessing.fonts import get_font_path
from surya.postprocessing.util import rescale_bbox
from surya.schema import PolygonBox
from surya.settings import settings
from surya.postprocessing.text import get_text_size


def keep_largest_boxes(boxes: List[PolygonBox]) -> List[PolygonBox]:
    new_boxes = []
    for box_obj in boxes:
        box = box_obj.bbox
        box_area = (box[2] - box[0]) * (box[3] - box[1])
        contained = False
        for other_box_obj in boxes:
            if other_box_obj.polygon == box_obj.polygon:
                continue

            other_box = other_box_obj.bbox
            other_box_area = (other_box[2] - other_box[0]) * (other_box[3] - other_box[1])
            if box == other_box:
                continue
            # find overlap percentage
            overlap = box_obj.intersection_pct(other_box_obj)
            if overlap > .9 and box_area < other_box_area:
                contained = True
                break
        if not contained:
            new_boxes.append(box_obj)
    return new_boxes


def clean_contained_boxes(boxes: List[PolygonBox]) -> List[PolygonBox]:
    new_boxes = []
    for box_obj in boxes:
        box = box_obj.bbox
        contained = False
        for other_box_obj in boxes:
            if other_box_obj.polygon == box_obj.polygon:
                continue

            other_box = other_box_obj.bbox
            if box == other_box:
                continue
            if box[0] >= other_box[0] and box[1] >= other_box[1] and box[2] <= other_box[2] and box[3] <= other_box[3]:
                contained = True
                break
        if not contained:
            new_boxes.append(box_obj)
    return new_boxes


def get_dynamic_thresholds(linemap, text_threshold, low_text, typical_top10_avg=0.7):
    # Find average intensity of top 10% pixels
    flat_map = linemap.ravel()
    top_10_count = int(len(flat_map) * 0.9)
    avg_intensity = np.mean(np.partition(flat_map, top_10_count)[top_10_count:])
    scaling_factor = np.clip(avg_intensity / typical_top10_avg, 0, 1) ** (1 / 2)

    low_text = np.clip(low_text * scaling_factor, 0.1, 0.6)
    text_threshold = np.clip(text_threshold * scaling_factor, 0.15, 0.8)

    return text_threshold, low_text


def detect_boxes(linemap, text_threshold, low_text):
    # From CRAFT - https://github.com/clovaai/CRAFT-pytorch
    # Modified to return boxes and for speed, accuracy
    img_h, img_w = linemap.shape

    text_threshold, low_text = get_dynamic_thresholds(linemap, text_threshold, low_text)

    text_score_comb = (linemap > low_text).astype(np.uint8)
    label_count, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb, connectivity=4)

    det = []
    confidences = []
    max_confidence = 0

    for k in range(1, label_count):
        # size filtering
        size = stats[k, cv2.CC_STAT_AREA]
        if size < 10:
            continue

        # make segmentation map
        x, y, w, h = stats[k, [cv2.CC_STAT_LEFT, cv2.CC_STAT_TOP, cv2.CC_STAT_WIDTH, cv2.CC_STAT_HEIGHT]]

        try:
            niter = int(np.sqrt(min(w, h)))
        except ValueError:
            niter = 0

        buffer = 1
        sx, sy = max(0, x - niter - buffer), max(0, y - niter - buffer)
        ex, ey = min(img_w, x + w + niter + buffer), min(img_h, y + h + niter + buffer)

        mask = (labels[sy:ey, sx:ex] == k)
        selected_linemap = linemap[sy:ey, sx:ex][mask]
        line_max = np.max(selected_linemap)

        # thresholding
        if line_max < text_threshold:
            continue

        segmap = mask.astype(np.uint8)

        ksize = buffer + niter
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(ksize, ksize))
        selected_segmap = cv2.dilate(segmap, kernel)

        # make box
        indices = np.nonzero(selected_segmap)
        x_inds = indices[1] + sx
        y_inds = indices[0] + sy
        np_contours = np.column_stack((x_inds, y_inds))
        rectangle = cv2.minAreaRect(np_contours)
        box = cv2.boxPoints(rectangle)

        # align diamond-shape
        w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
        box_ratio = max(w, h) / (min(w, h) + 1e-5)
        if abs(1 - box_ratio) <= 0.1:
            l, r = min(np_contours[:, 0]), max(np_contours[:, 0])
            t, b = min(np_contours[:, 1]), max(np_contours[:, 1])
            box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)

        # make clock-wise order
        startidx = box.sum(axis=1).argmin()
        box = np.roll(box, 4-startidx, 0)
        box = np.array(box)

        confidence = line_max
        max_confidence = max(max_confidence, line_max)

        confidences.append(confidence)
        det.append(box)

    if max_confidence > 0:
        confidences = [c / max_confidence for c in confidences]
    return det, confidences


def get_detected_boxes(textmap, text_threshold=None,  low_text=None) -> List[PolygonBox]:
    if text_threshold is None:
        text_threshold = settings.DETECTOR_TEXT_THRESHOLD

    if low_text is None:
        low_text = settings.DETECTOR_BLANK_THRESHOLD

    textmap = textmap.copy()
    textmap = textmap.astype(np.float32)
    boxes, confidences = detect_boxes(textmap, text_threshold, low_text)
    # From point form to box form
    boxes = [PolygonBox(polygon=box, confidence=confidence) for box, confidence in zip(boxes, confidences)]
    return boxes


def get_and_clean_boxes(textmap, processor_size, image_size, text_threshold=None, low_text=None) -> List[PolygonBox]:
    bboxes = get_detected_boxes(textmap, text_threshold, low_text)
    for bbox in bboxes:
        bbox.rescale(processor_size, image_size)
        bbox.fit_to_bounds([0, 0, image_size[0], image_size[1]])

    bboxes = clean_contained_boxes(bboxes)
    return bboxes



def draw_bboxes_on_image(bboxes, image, labels=None, label_font_size=10, color: str | list='red'):
    polys = []
    for bb in bboxes:
        # Clockwise polygon
        poly = [
            [bb[0], bb[1]],
            [bb[2], bb[1]],
            [bb[2], bb[3]],
            [bb[0], bb[3]]
        ]
        polys.append(poly)

    return draw_polys_on_image(polys, image, labels, label_font_size=label_font_size, color=color)


def draw_polys_on_image(corners, image, labels=None, box_padding=-1, label_offset=1, label_font_size=10, color: str | list='red'):
    draw = ImageDraw.Draw(image)
    font_path = get_font_path()
    label_font = ImageFont.truetype(font_path, label_font_size)

    for i in range(len(corners)):
        poly = corners[i]
        poly = [(int(p[0]), int(p[1])) for p in poly]
        draw.polygon(poly, outline=color[i] if isinstance(color, list) else color, width=1)

        if labels is not None:
            label = labels[i]
            text_position = (
                min([p[0] for p in poly]) + label_offset,
                min([p[1] for p in poly]) + label_offset
            )
            text_size = get_text_size(label, label_font)
            box_position = (
                text_position[0] - box_padding + label_offset,
                text_position[1] - box_padding + label_offset,
                text_position[0] + text_size[0] + box_padding + label_offset,
                text_position[1] + text_size[1] + box_padding + label_offset
            )
            draw.rectangle(box_position, fill="white")
            draw.text(
                text_position,
                label,
                fill=color[i] if isinstance(color, list) else color,
                font=label_font
            )

    return image