import os os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false" from pathlib import Path import requests import shutil import io from pathlib import Path import openvino as ov import torch from transformers import ( TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList, ) from llm_config import ( SUPPORTED_EMBEDDING_MODELS, SUPPORTED_RERANK_MODELS, SUPPORTED_LLM_MODELS, ) from huggingface_hub import login config_shared_path = Path("../../utils/llm_config.py") config_dst_path = Path("llm_config.py") text_example_en_path = Path("text_example_en.pdf") text_example_cn_path = Path("text_example_cn.pdf") text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf" text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf" if not config_dst_path.exists(): if config_shared_path.exists(): try: os.symlink(config_shared_path, config_dst_path) except Exception: shutil.copy(config_shared_path, config_dst_path) else: r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py") with open("llm_config.py", "w", encoding="utf-8") as f: f.write(r.text) elif not os.path.islink(config_dst_path): print("LLM config will be updated") if config_shared_path.exists(): shutil.copy(config_shared_path, config_dst_path) else: r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py") with open("llm_config.py", "w", encoding="utf-8") as f: f.write(r.text) if not text_example_en_path.exists(): r = requests.get(url=text_example_en) content = io.BytesIO(r.content) with open("text_example_en.pdf", "wb") as f: f.write(content.read()) if not text_example_cn_path.exists(): r = requests.get(url=text_example_cn) content = io.BytesIO(r.content) with open("text_example_cn.pdf", "wb") as f: f.write(content.read()) model_language = "English" llm_model_id= "llama-3-8b-instruct" llm_model_configuration = SUPPORTED_LLM_MODELS[model_language][llm_model_id] print(f"Selected LLM model {llm_model_id}") prepare_int4_model = True # Prepare INT4 model prepare_int8_model = False # Do not prepare INT8 model prepare_fp16_model = False # Do not prepare FP16 model enable_awq = False # Get the token from the environment variable hf_token = os.getenv("HUGGINGFACE_TOKEN") if hf_token is None: raise ValueError( "HUGGINGFACE_TOKEN environment variable not set. " "Please set it in your environment variables or repository secrets." ) # Log in to Hugging Face Hub login(token=hf_token) pt_model_id = llm_model_configuration["model_id"] # pt_model_name = llm_model_id.value.split("-")[0] fp16_model_dir = Path(llm_model_id) / "FP16" int8_model_dir = Path(llm_model_id) / "INT8_compressed_weights" int4_model_dir = Path(llm_model_id) / "INT4_compressed_weights" def convert_to_fp16(): if (fp16_model_dir / "openvino_model.xml").exists(): return remote_code = llm_model_configuration.get("remote_code", False) export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id) if remote_code: export_command_base += " --trust-remote-code" export_command = export_command_base + " " + str(fp16_model_dir) def convert_to_int8(): if (int8_model_dir / "openvino_model.xml").exists(): return int8_model_dir.mkdir(parents=True, exist_ok=True) remote_code = llm_model_configuration.get("remote_code", False) export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id) if remote_code: export_command_base += " --trust-remote-code" export_command = export_command_base + " " + str(int8_model_dir) def convert_to_int4(): compression_configs = { "zephyr-7b-beta": { "sym": True, "group_size": 64, "ratio": 0.6, }, "mistral-7b": { "sym": True, "group_size": 64, "ratio": 0.6, }, "minicpm-2b-dpo": { "sym": True, "group_size": 64, "ratio": 0.6, }, "gemma-2b-it": { "sym": True, "group_size": 64, "ratio": 0.6, }, "notus-7b-v1": { "sym": True, "group_size": 64, "ratio": 0.6, }, "neural-chat-7b-v3-1": { "sym": True, "group_size": 64, "ratio": 0.6, }, "llama-2-chat-7b": { "sym": True, "group_size": 128, "ratio": 0.8, }, "llama-3-8b-instruct": { "sym": True, "group_size": 128, "ratio": 0.8, }, "gemma-7b-it": { "sym": True, "group_size": 128, "ratio": 0.8, }, "chatglm2-6b": { "sym": True, "group_size": 128, "ratio": 0.72, }, "qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6}, "red-pajama-3b-chat": { "sym": False, "group_size": 128, "ratio": 0.5, }, "default": { "sym": False, "group_size": 128, "ratio": 0.8, }, } model_compression_params = compression_configs.get(llm_model_id, compression_configs["default"]) if (int4_model_dir / "openvino_model.xml").exists(): return remote_code = llm_model_configuration.get("remote_code", False) export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id) int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"]) if model_compression_params["sym"]: int4_compression_args += " --sym" print("updated") if enable_awq: int4_compression_args += " --awq --dataset wikitext2 --num-samples 128" export_command_base += int4_compression_args if remote_code: export_command_base += " --trust-remote-code" # export_command = export_command_base + " " + str(int4_model_dir) if prepare_fp16_model: convert_to_fp16() if prepare_int8_model: convert_to_int8() if prepare_int4_model: convert_to_int4() fp16_weights = fp16_model_dir / "openvino_model.bin" int8_weights = int8_model_dir / "openvino_model.bin" int4_weights = int4_model_dir / "openvino_model.bin" if fp16_weights.exists(): print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB") for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]): if compressed_weights.exists(): print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB") if compressed_weights.exists() and fp16_weights.exists(): print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}") embedding_model_id = 'bge-small-en-v1.5' #'bge-small-en-v1.5', 'bge-large-en-v1.5', 'bge-m3'), value='bge-small-en-v1.5' embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language][embedding_model_id] print(f"Selected {embedding_model_id} model") export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"]) export_command = export_command_base + " " + str(embedding_model_id) rerank_model_id = "bge-reranker-v2-m3" #'bge-reranker-v2-m3', 'bge-reranker-large', 'bge-reranker-base') rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id] print(f"Selected {rerank_model_id} model") export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"]) export_command = export_command_base + " " + str(rerank_model_id) embedding_device = "CPU" USING_NPU = embedding_device == "NPU" npu_embedding_dir = embedding_model_id + "-npu" npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml" if USING_NPU and not Path(npu_embedding_dir).exists(): r = requests.get( url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", ) with open("notebook_utils.py", "w") as f: f.write(r.text) import notebook_utils as utils shutil.copytree(embedding_model_id, npu_embedding_dir) utils.optimize_bge_embedding(Path(embedding_model_id) / "openvino_model.xml", npu_embedding_path) rerank_device = "CPU" llm_device = "CPU" from langchain_community.embeddings import OpenVINOBgeEmbeddings embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id batch_size = 1 if USING_NPU else 4 embedding_model_kwargs = {"device": embedding_device, "compile": False} encode_kwargs = { "mean_pooling": embedding_model_configuration["mean_pooling"], "normalize_embeddings": embedding_model_configuration["normalize_embeddings"], "batch_size": batch_size, } embedding = OpenVINOBgeEmbeddings( model_name_or_path=embedding_model_name, model_kwargs=embedding_model_kwargs, encode_kwargs=encode_kwargs, ) if USING_NPU: embedding.ov_model.reshape(1, 512) embedding.ov_model.compile() text = "This is a test document." embedding_result = embedding.embed_query(text) embedding_result[:3] from langchain_community.document_compressors.openvino_rerank import OpenVINOReranker rerank_model_name = rerank_model_id rerank_model_kwargs = {"device": rerank_device} rerank_top_n = 2 reranker = OpenVINOReranker( model_name_or_path=rerank_model_name, model_kwargs=rerank_model_kwargs, top_n=rerank_top_n, ) model_to_run = "INT4" from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline if model_to_run == "INT4": model_dir = int4_model_dir elif model_to_run == "INT8": model_dir = int8_model_dir else: model_dir = fp16_model_dir print(f"Loading model from {model_dir}") ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""} if "GPU" in llm_device and "qwen2-7b-instruct" in llm_model_id: ov_config["GPU_ENABLE_SDPA_OPTIMIZATION"] = "NO" # On a GPU device a model is executed in FP16 precision. For red-pajama-3b-chat model there known accuracy # issues caused by this, which we avoid by setting precision hint to "f32". if llm_model_id == "red-pajama-3b-chat" and "GPU" in core.available_devices and llm_device in ["GPU", "AUTO"]: ov_config["INFERENCE_PRECISION_HINT"] = "f32" llm = HuggingFacePipeline.from_model_id( model_id=str(model_dir), task="text-generation", backend="openvino", model_kwargs={ "device": llm_device, "ov_config": ov_config, "trust_remote_code": True, }, pipeline_kwargs={"max_new_tokens": 2}, ) llm.invoke("2 + 2 =") import re from typing import List from langchain.text_splitter import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, MarkdownTextSplitter, ) from langchain.document_loaders import ( CSVLoader, EverNoteLoader, PyPDFLoader, TextLoader, UnstructuredEPubLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, ) class ChineseTextSplitter(CharacterTextSplitter): def __init__(self, pdf: bool = False, **kwargs): super().__init__(**kwargs) self.pdf = pdf def split_text(self, text: str) -> List[str]: if self.pdf: text = re.sub(r"\n{3,}", "\n", text) text = text.replace("\n\n", "") sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') sent_list = [] for ele in sent_sep_pattern.split(text): if sent_sep_pattern.match(ele) and sent_list: sent_list[-1] += ele elif ele: sent_list.append(ele) return sent_list TEXT_SPLITERS = { "Character": CharacterTextSplitter, "RecursiveCharacter": RecursiveCharacterTextSplitter, "Markdown": MarkdownTextSplitter, "Chinese": ChineseTextSplitter, } LOADERS = { ".csv": (CSVLoader, {}), ".doc": (UnstructuredWordDocumentLoader, {}), ".docx": (UnstructuredWordDocumentLoader, {}), ".enex": (EverNoteLoader, {}), ".epub": (UnstructuredEPubLoader, {}), ".html": (UnstructuredHTMLLoader, {}), ".md": (UnstructuredMarkdownLoader, {}), ".odt": (UnstructuredODTLoader, {}), ".pdf": (PyPDFLoader, {}), ".ppt": (UnstructuredPowerPointLoader, {}), ".pptx": (UnstructuredPowerPointLoader, {}), ".txt": (TextLoader, {"encoding": "utf8"}), } chinese_examples = [ ["英特尔®酷睿™ Ultra处理器可以降低多少功耗?"], ["相比英特尔之前的移动处理器产品,英特尔®酷睿™ Ultra处理器的AI推理性能提升了多少?"], ["英特尔博锐® Enterprise系统提供哪些功能?"], ] english_examples = [ ["How much power consumption can Intel® Core™ Ultra Processors help save?"], ["Compared to Intel’s previous mobile processor, what is the advantage of Intel® Core™ Ultra Processors for Artificial Intelligence?"], ["What can Intel vPro® Enterprise systems offer?"], ] if model_language == "English": # text_example_path = "text_example_en.pdf" text_example_path = ['Supervisors-Guide-Accurate-Timekeeping_AH edits.docx','Salary-vs-Hourly-Guide_AH edits.docx','Employee-Guide-Accurate-Timekeeping_AH edits.docx','Eller Overtime Guidelines.docx','Eller FLSA information 9.2024_AH edits.docx','Accurate Timekeeping Supervisors 12.2.20_AH edits.docx'] else: text_example_path = "text_example_cn.pdf" examples = chinese_examples if (model_language == "Chinese") else english_examples from langchain.prompts import PromptTemplate from langchain_community.vectorstores import FAISS from langchain.chains.retrieval import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.docstore.document import Document from langchain.retrievers import ContextualCompressionRetriever from threading import Thread import gradio as gr stop_tokens = llm_model_configuration.get("stop_tokens") rag_prompt_template = llm_model_configuration["rag_prompt_template"] class StopOnTokens(StoppingCriteria): def __init__(self, token_ids): self.token_ids = token_ids def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: for stop_id in self.token_ids: if input_ids[0][-1] == stop_id: return True return False if stop_tokens is not None: if isinstance(stop_tokens[0], str): stop_tokens = llm.pipeline.tokenizer.convert_tokens_to_ids(stop_tokens) stop_tokens = [StopOnTokens(stop_tokens)] def load_single_document(file_path: str) -> List[Document]: """ helper for loading a single document Params: file_path: document path Returns: documents loaded """ ext = "." + file_path.rsplit(".", 1)[-1] if ext in LOADERS: loader_class, loader_args = LOADERS[ext] loader = loader_class(file_path, **loader_args) return loader.load() raise ValueError(f"File does not exist '{ext}'") def default_partial_text_processor(partial_text: str, new_text: str): """ helper for updating partially generated answer, used by default Params: partial_text: text buffer for storing previosly generated text new_text: text update for the current step Returns: updated text string """ partial_text += new_text return partial_text text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor) def create_vectordb( docs, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold, progress=gr.Progress() ): """ Initialize a vector database Params: doc: orignal documents provided by user spliter_name: spliter method chunk_size: size of a single sentence chunk chunk_overlap: overlap size between 2 chunks vector_search_top_k: Vector search top k vector_rerank_top_n: Search rerank top n run_rerank: whether run reranker search_method: top k search method score_threshold: score threshold when selecting 'similarity_score_threshold' method """ global db global retriever global combine_docs_chain global rag_chain if vector_rerank_top_n > vector_search_top_k: gr.Warning("Search top k must >= Rerank top n") documents = [] for doc in docs: if type(doc) is not str: doc = doc.name documents.extend(load_single_document(doc)) text_splitter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap) texts = text_splitter.split_documents(documents) db = FAISS.from_documents(texts, embedding) if search_method == "similarity_score_threshold": search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold} else: search_kwargs = {"k": vector_search_top_k} retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method) if run_rerank: reranker.top_n = vector_rerank_top_n retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever) prompt = PromptTemplate.from_template(rag_prompt_template) combine_docs_chain = create_stuff_documents_chain(llm, prompt) rag_chain = create_retrieval_chain(retriever, combine_docs_chain) return "Vector database is Ready" def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold): """ Update retriever Params: vector_search_top_k: Vector search top k vector_rerank_top_n: Search rerank top n run_rerank: whether run reranker search_method: top k search method score_threshold: score threshold when selecting 'similarity_score_threshold' method """ global db global retriever global combine_docs_chain global rag_chain if vector_rerank_top_n > vector_search_top_k: gr.Warning("Search top k must >= Rerank top n") if search_method == "similarity_score_threshold": search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold} else: search_kwargs = {"k": vector_search_top_k} retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method) if run_rerank: retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever) reranker.top_n = vector_rerank_top_n rag_chain = create_retrieval_chain(retriever, combine_docs_chain) return "Vector database is Ready" def user(message, history): """ callback function for updating user messages in interface on submit button click Params: message: current message history: conversation history Returns: None """ # Append the user's message to the conversation history return "", history + [[message, ""]] def bot(history, temperature, top_p, top_k, repetition_penalty, hide_full_prompt, do_rag): """ callback function for running chatbot on submit button click Params: history: conversation history temperature: parameter for control the level of creativity in AI-generated text. By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse. top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability. top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability. repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text. hide_full_prompt: whether to show searching results in promopt. do_rag: whether do RAG when generating texts. """ streamer = TextIteratorStreamer( llm.pipeline.tokenizer, timeout=60.0, skip_prompt=hide_full_prompt, skip_special_tokens=True, ) llm.pipeline._forward_params = dict( max_new_tokens=512, temperature=temperature, do_sample=temperature > 0.0, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, streamer=streamer, ) if stop_tokens is not None: llm.pipeline._forward_params["stopping_criteria"] = StoppingCriteriaList(stop_tokens) if do_rag: t1 = Thread(target=rag_chain.invoke, args=({"input": history[-1][0]},)) else: input_text = rag_prompt_template.format(input=history[-1][0], context="") t1 = Thread(target=llm.invoke, args=(input_text,)) t1.start() # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: partial_text = text_processor(partial_text, new_text) history[-1][1] = partial_text yield history def request_cancel(): llm.pipeline.model.request.cancel() def clear_files(): return "Vector Store is Not ready" # initialize the vector store with example document create_vectordb( text_example_path, #changed "RecursiveCharacter", chunk_size=400, chunk_overlap=50, vector_search_top_k=10, vector_rerank_top_n=2, run_rerank=True, search_method="similarity_score_threshold", score_threshold=0.5, ) with gr.Blocks( theme=gr.themes.Soft(), css=".disclaimer {font-variant-caps: all-small-caps;}", ) as demo: gr.Markdown("""