|
import os |
|
os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false" |
|
from pathlib import Path |
|
import requests |
|
import shutil |
|
import io |
|
from pathlib import Path |
|
import openvino as ov |
|
import torch |
|
from transformers import ( |
|
TextIteratorStreamer, |
|
StoppingCriteria, |
|
StoppingCriteriaList, |
|
) |
|
from llm_config import ( |
|
SUPPORTED_EMBEDDING_MODELS, |
|
SUPPORTED_RERANK_MODELS, |
|
SUPPORTED_LLM_MODELS, |
|
) |
|
from huggingface_hub import login |
|
|
|
|
|
config_shared_path = Path("../../utils/llm_config.py") |
|
config_dst_path = Path("llm_config.py") |
|
text_example_en_path = Path("text_example_en.pdf") |
|
text_example_cn_path = Path("text_example_cn.pdf") |
|
text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf" |
|
text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf" |
|
|
|
if not config_dst_path.exists(): |
|
if config_shared_path.exists(): |
|
try: |
|
os.symlink(config_shared_path, config_dst_path) |
|
except Exception: |
|
shutil.copy(config_shared_path, config_dst_path) |
|
else: |
|
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py") |
|
with open("llm_config.py", "w", encoding="utf-8") as f: |
|
f.write(r.text) |
|
elif not os.path.islink(config_dst_path): |
|
print("LLM config will be updated") |
|
if config_shared_path.exists(): |
|
shutil.copy(config_shared_path, config_dst_path) |
|
else: |
|
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py") |
|
with open("llm_config.py", "w", encoding="utf-8") as f: |
|
f.write(r.text) |
|
|
|
|
|
if not text_example_en_path.exists(): |
|
r = requests.get(url=text_example_en) |
|
content = io.BytesIO(r.content) |
|
with open("text_example_en.pdf", "wb") as f: |
|
f.write(content.read()) |
|
|
|
if not text_example_cn_path.exists(): |
|
r = requests.get(url=text_example_cn) |
|
content = io.BytesIO(r.content) |
|
with open("text_example_cn.pdf", "wb") as f: |
|
f.write(content.read()) |
|
|
|
model_language = "English" |
|
llm_model_id = "llama-3-8b-instruct" |
|
llm_model_configuration = SUPPORTED_LLM_MODELS[model_language][llm_model_id] |
|
print(f"Selected LLM model {llm_model_id}") |
|
prepare_int4_model = True |
|
prepare_int8_model = False |
|
prepare_fp16_model = False |
|
enable_awq = False |
|
|
|
hf_token = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
if hf_token is None: |
|
raise ValueError( |
|
"HUGGINGFACE_TOKEN environment variable not set. " |
|
"Please set it in your environment variables or repository secrets." |
|
) |
|
|
|
|
|
login(token=hf_token) |
|
pt_model_id = llm_model_configuration["model_id"] |
|
|
|
fp16_model_dir = Path(llm_model_id) / "FP16" |
|
int8_model_dir = Path(llm_model_id) / "INT8_compressed_weights" |
|
int4_model_dir = Path(llm_model_id) / "INT4_compressed_weights" |
|
|
|
|
|
def convert_to_fp16(): |
|
if (fp16_model_dir / "openvino_model.xml").exists(): |
|
return |
|
remote_code = llm_model_configuration.get("remote_code", False) |
|
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id) |
|
if remote_code: |
|
export_command_base += " --trust-remote-code" |
|
export_command = export_command_base + " " + str(fp16_model_dir) |
|
|
|
|
|
|
|
def convert_to_int8(): |
|
if (int8_model_dir / "openvino_model.xml").exists(): |
|
return |
|
int8_model_dir.mkdir(parents=True, exist_ok=True) |
|
remote_code = llm_model_configuration.get("remote_code", False) |
|
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id) |
|
if remote_code: |
|
export_command_base += " --trust-remote-code" |
|
export_command = export_command_base + " " + str(int8_model_dir) |
|
|
|
|
|
|
|
def convert_to_int4(): |
|
compression_configs = { |
|
"zephyr-7b-beta": { |
|
"sym": True, |
|
"group_size": 64, |
|
"ratio": 0.6, |
|
}, |
|
"mistral-7b": { |
|
"sym": True, |
|
"group_size": 64, |
|
"ratio": 0.6, |
|
}, |
|
"minicpm-2b-dpo": { |
|
"sym": True, |
|
"group_size": 64, |
|
"ratio": 0.6, |
|
}, |
|
"gemma-2b-it": { |
|
"sym": True, |
|
"group_size": 64, |
|
"ratio": 0.6, |
|
}, |
|
"notus-7b-v1": { |
|
"sym": True, |
|
"group_size": 64, |
|
"ratio": 0.6, |
|
}, |
|
"neural-chat-7b-v3-1": { |
|
"sym": True, |
|
"group_size": 64, |
|
"ratio": 0.6, |
|
}, |
|
"llama-2-chat-7b": { |
|
"sym": True, |
|
"group_size": 128, |
|
"ratio": 0.8, |
|
}, |
|
"llama-3-8b-instruct": { |
|
"sym": True, |
|
"group_size": 128, |
|
"ratio": 0.8, |
|
}, |
|
"gemma-7b-it": { |
|
"sym": True, |
|
"group_size": 128, |
|
"ratio": 0.8, |
|
}, |
|
"chatglm2-6b": { |
|
"sym": True, |
|
"group_size": 128, |
|
"ratio": 0.72, |
|
}, |
|
"qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6}, |
|
"red-pajama-3b-chat": { |
|
"sym": False, |
|
"group_size": 128, |
|
"ratio": 0.5, |
|
}, |
|
"default": { |
|
"sym": False, |
|
"group_size": 128, |
|
"ratio": 0.8, |
|
}, |
|
} |
|
|
|
model_compression_params = compression_configs.get(llm_model_id, compression_configs["default"]) |
|
if (int4_model_dir / "openvino_model.xml").exists(): |
|
return |
|
remote_code = llm_model_configuration.get("remote_code", False) |
|
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id) |
|
int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"]) |
|
if model_compression_params["sym"]: |
|
int4_compression_args += " --sym" |
|
print("updated") |
|
if enable_awq: |
|
int4_compression_args += " --awq --dataset wikitext2 --num-samples 128" |
|
export_command_base += int4_compression_args |
|
if remote_code: |
|
export_command_base += " --trust-remote-code" |
|
|
|
|
|
|
|
|
|
if prepare_fp16_model: |
|
convert_to_fp16() |
|
if prepare_int8_model: |
|
convert_to_int8() |
|
if prepare_int4_model: |
|
convert_to_int4() |
|
fp16_weights = fp16_model_dir / "openvino_model.bin" |
|
int8_weights = int8_model_dir / "openvino_model.bin" |
|
int4_weights = int4_model_dir / "openvino_model.bin" |
|
|
|
if fp16_weights.exists(): |
|
print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB") |
|
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]): |
|
if compressed_weights.exists(): |
|
print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB") |
|
if compressed_weights.exists() and fp16_weights.exists(): |
|
print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}") |
|
embedding_model_id = 'bge-small-en-v1.5' |
|
embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language][embedding_model_id] |
|
print(f"Selected {embedding_model_id} model") |
|
export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"]) |
|
export_command = export_command_base + " " + str(embedding_model_id) |
|
rerank_model_id = "bge-reranker-v2-m3" |
|
rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id] |
|
print(f"Selected {rerank_model_id} model") |
|
export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"]) |
|
export_command = export_command_base + " " + str(rerank_model_id) |
|
embedding_device = "CPU" |
|
USING_NPU = embedding_device == "NPU" |
|
|
|
npu_embedding_dir = embedding_model_id + "-npu" |
|
npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml" |
|
if USING_NPU and not Path(npu_embedding_dir).exists(): |
|
r = requests.get( |
|
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", |
|
) |
|
with open("notebook_utils.py", "w") as f: |
|
f.write(r.text) |
|
import notebook_utils as utils |
|
|
|
shutil.copytree(embedding_model_id, npu_embedding_dir) |
|
utils.optimize_bge_embedding(Path(embedding_model_id) / "openvino_model.xml", npu_embedding_path) |
|
rerank_device = "CPU" |
|
llm_device = "CPU" |
|
from langchain_community.embeddings import OpenVINOBgeEmbeddings |
|
|
|
embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id |
|
batch_size = 1 if USING_NPU else 4 |
|
embedding_model_kwargs = {"device": embedding_device, "compile": False} |
|
encode_kwargs = { |
|
"mean_pooling": embedding_model_configuration["mean_pooling"], |
|
"normalize_embeddings": embedding_model_configuration["normalize_embeddings"], |
|
"batch_size": batch_size, |
|
} |
|
|
|
embedding = OpenVINOBgeEmbeddings( |
|
model_name_or_path="BAAI/bge-small-en-v1.5", |
|
model_kwargs=embedding_model_kwargs, |
|
encode_kwargs=encode_kwargs, |
|
) |
|
if USING_NPU: |
|
embedding.ov_model.reshape(1, 512) |
|
embedding.ov_model.compile() |
|
|
|
text = "This is a test document." |
|
embedding_result = embedding.embed_query(text) |
|
print(embedding_result[:3]) |
|
from langchain_community.document_compressors.openvino_rerank import OpenVINOReranker |
|
|
|
rerank_model_name = rerank_model_id |
|
rerank_model_kwargs = {"device": rerank_device} |
|
rerank_top_n = 2 |
|
|
|
reranker = OpenVINOReranker( |
|
model_name_or_path="BAAI/bge-reranker-v2-m3", |
|
model_kwargs=rerank_model_kwargs, |
|
top_n=rerank_top_n, |
|
) |
|
model_to_run = "INT4" |
|
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline |
|
|
|
if model_to_run == "INT4": |
|
model_dir = int4_model_dir |
|
elif model_to_run == "INT8": |
|
model_dir = int8_model_dir |
|
else: |
|
model_dir = fp16_model_dir |
|
print(f"Loading model from {model_dir}") |
|
|
|
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""} |
|
|
|
print("starting setting llm model") |
|
llm = HuggingFacePipeline.from_model_id( |
|
model_id="meta-llama/Meta-Llama-3-8B", |
|
task="text-generation", |
|
backend="openvino", |
|
model_kwargs={ |
|
"device": llm_device, |
|
"ov_config": ov_config, |
|
"trust_remote_code": True, |
|
}, |
|
pipeline_kwargs={"max_new_tokens": 2}, |
|
) |
|
|
|
print(llm.invoke("2 + 2 =")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
from typing import List |
|
from langchain.text_splitter import ( |
|
CharacterTextSplitter, |
|
RecursiveCharacterTextSplitter, |
|
MarkdownTextSplitter, |
|
) |
|
from langchain.document_loaders import ( |
|
CSVLoader, |
|
EverNoteLoader, |
|
PyPDFLoader, |
|
TextLoader, |
|
UnstructuredEPubLoader, |
|
UnstructuredHTMLLoader, |
|
UnstructuredMarkdownLoader, |
|
UnstructuredODTLoader, |
|
UnstructuredPowerPointLoader, |
|
UnstructuredWordDocumentLoader, |
|
) |
|
|
|
|
|
class ChineseTextSplitter(CharacterTextSplitter): |
|
def __init__(self, pdf: bool = False, **kwargs): |
|
super().__init__(**kwargs) |
|
self.pdf = pdf |
|
|
|
def split_text(self, text: str) -> List[str]: |
|
if self.pdf: |
|
text = re.sub(r"\n{3,}", "\n", text) |
|
text = text.replace("\n\n", "") |
|
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') |
|
sent_list = [] |
|
for ele in sent_sep_pattern.split(text): |
|
if sent_sep_pattern.match(ele) and sent_list: |
|
sent_list[-1] += ele |
|
elif ele: |
|
sent_list.append(ele) |
|
return sent_list |
|
|
|
|
|
TEXT_SPLITERS = { |
|
"Character": CharacterTextSplitter, |
|
"RecursiveCharacter": RecursiveCharacterTextSplitter, |
|
"Markdown": MarkdownTextSplitter, |
|
"Chinese": ChineseTextSplitter, |
|
} |
|
|
|
|
|
LOADERS = { |
|
".csv": (CSVLoader, {}), |
|
".doc": (UnstructuredWordDocumentLoader, {}), |
|
".docx": (UnstructuredWordDocumentLoader, {}), |
|
".enex": (EverNoteLoader, {}), |
|
".epub": (UnstructuredEPubLoader, {}), |
|
".html": (UnstructuredHTMLLoader, {}), |
|
".md": (UnstructuredMarkdownLoader, {}), |
|
".odt": (UnstructuredODTLoader, {}), |
|
".pdf": (PyPDFLoader, {}), |
|
".ppt": (UnstructuredPowerPointLoader, {}), |
|
".pptx": (UnstructuredPowerPointLoader, {}), |
|
".txt": (TextLoader, {"encoding": "utf8"}), |
|
} |
|
|
|
chinese_examples = [ |
|
["英特尔®酷睿™ Ultra处理器可以降低多少功耗?"], |
|
["相比英特尔之前的移动处理器产品,英特尔®酷睿™ Ultra处理器的AI推理性能提升了多少?"], |
|
["英特尔博锐® Enterprise系统提供哪些功能?"], |
|
] |
|
|
|
english_examples = [ |
|
["How much power consumption can Intel® Core™ Ultra Processors help save?"], |
|
["Compared to Intel’s previous mobile processor, what is the advantage of Intel® Core™ Ultra Processors for Artificial Intelligence?"], |
|
["What can Intel vPro® Enterprise systems offer?"], |
|
] |
|
|
|
if model_language == "English": |
|
|
|
text_example_path = ['Supervisors-Guide-Accurate-Timekeeping_AH edits.docx','Salary-vs-Hourly-Guide_AH edits.docx','Employee-Guide-Accurate-Timekeeping_AH edits.docx','Eller Overtime Guidelines.docx','Eller FLSA information 9.2024_AH edits.docx','Accurate Timekeeping Supervisors 12.2.20_AH edits.docx'] |
|
else: |
|
text_example_path = "text_example_cn.pdf" |
|
|
|
examples = chinese_examples if (model_language == "Chinese") else english_examples |
|
from langchain.prompts import PromptTemplate |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.chains.retrieval import create_retrieval_chain |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain.docstore.document import Document |
|
from langchain.retrievers import ContextualCompressionRetriever |
|
from threading import Thread |
|
import gradio as gr |
|
|
|
stop_tokens = llm_model_configuration.get("stop_tokens") |
|
rag_prompt_template = llm_model_configuration["rag_prompt_template"] |
|
|
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __init__(self, token_ids): |
|
self.token_ids = token_ids |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
for stop_id in self.token_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
|
|
if stop_tokens is not None: |
|
if isinstance(stop_tokens[0], str): |
|
stop_tokens = llm.pipeline.tokenizer.convert_tokens_to_ids(stop_tokens) |
|
|
|
stop_tokens = [StopOnTokens(stop_tokens)] |
|
|
|
|
|
def load_single_document(file_path: str) -> List[Document]: |
|
""" |
|
helper for loading a single document |
|
|
|
Params: |
|
file_path: document path |
|
Returns: |
|
documents loaded |
|
|
|
""" |
|
ext = "." + file_path.rsplit(".", 1)[-1] |
|
if ext in LOADERS: |
|
loader_class, loader_args = LOADERS[ext] |
|
loader = loader_class(file_path, **loader_args) |
|
return loader.load() |
|
|
|
raise ValueError(f"File does not exist '{ext}'") |
|
|
|
|
|
def default_partial_text_processor(partial_text: str, new_text: str): |
|
""" |
|
helper for updating partially generated answer, used by default |
|
|
|
Params: |
|
partial_text: text buffer for storing previosly generated text |
|
new_text: text update for the current step |
|
Returns: |
|
updated text string |
|
|
|
""" |
|
partial_text += new_text |
|
return partial_text |
|
|
|
|
|
text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor) |
|
|
|
|
|
def create_vectordb( |
|
docs, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold, progress=gr.Progress() |
|
): |
|
""" |
|
Initialize a vector database |
|
|
|
Params: |
|
doc: orignal documents provided by user |
|
spliter_name: spliter method |
|
chunk_size: size of a single sentence chunk |
|
chunk_overlap: overlap size between 2 chunks |
|
vector_search_top_k: Vector search top k |
|
vector_rerank_top_n: Search rerank top n |
|
run_rerank: whether run reranker |
|
search_method: top k search method |
|
score_threshold: score threshold when selecting 'similarity_score_threshold' method |
|
|
|
""" |
|
global db |
|
global retriever |
|
global combine_docs_chain |
|
global rag_chain |
|
|
|
if vector_rerank_top_n > vector_search_top_k: |
|
gr.Warning("Search top k must >= Rerank top n") |
|
|
|
documents = [] |
|
for doc in docs: |
|
if type(doc) is not str: |
|
doc = doc.name |
|
documents.extend(load_single_document(doc)) |
|
|
|
text_splitter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
|
|
texts = text_splitter.split_documents(documents) |
|
db = FAISS.from_documents(texts, embedding) |
|
if search_method == "similarity_score_threshold": |
|
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold} |
|
else: |
|
search_kwargs = {"k": vector_search_top_k} |
|
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method) |
|
if run_rerank: |
|
reranker.top_n = vector_rerank_top_n |
|
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever) |
|
prompt = PromptTemplate.from_template(rag_prompt_template) |
|
combine_docs_chain = create_stuff_documents_chain(llm, prompt) |
|
|
|
rag_chain = create_retrieval_chain(retriever, combine_docs_chain) |
|
|
|
return "Vector database is Ready" |
|
|
|
|
|
def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold): |
|
""" |
|
Update retriever |
|
|
|
Params: |
|
vector_search_top_k: Vector search top k |
|
vector_rerank_top_n: Search rerank top n |
|
run_rerank: whether run reranker |
|
search_method: top k search method |
|
score_threshold: score threshold when selecting 'similarity_score_threshold' method |
|
|
|
""" |
|
global db |
|
global retriever |
|
global combine_docs_chain |
|
global rag_chain |
|
|
|
if vector_rerank_top_n > vector_search_top_k: |
|
gr.Warning("Search top k must >= Rerank top n") |
|
|
|
if search_method == "similarity_score_threshold": |
|
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold} |
|
else: |
|
search_kwargs = {"k": vector_search_top_k} |
|
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method) |
|
if run_rerank: |
|
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever) |
|
reranker.top_n = vector_rerank_top_n |
|
rag_chain = create_retrieval_chain(retriever, combine_docs_chain) |
|
|
|
return "Vector database is Ready" |
|
|
|
|
|
def user(message, history): |
|
""" |
|
callback function for updating user messages in interface on submit button click |
|
|
|
Params: |
|
message: current message |
|
history: conversation history |
|
Returns: |
|
None |
|
""" |
|
|
|
return "", history + [[message, ""]] |
|
|
|
|
|
def bot(history, temperature, top_p, top_k, repetition_penalty, hide_full_prompt, do_rag): |
|
""" |
|
callback function for running chatbot on submit button click |
|
|
|
Params: |
|
history: conversation history |
|
temperature: parameter for control the level of creativity in AI-generated text. |
|
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse. |
|
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability. |
|
top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability. |
|
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text. |
|
hide_full_prompt: whether to show searching results in promopt. |
|
do_rag: whether do RAG when generating texts. |
|
|
|
""" |
|
streamer = TextIteratorStreamer( |
|
llm.pipeline.tokenizer, |
|
timeout=60.0, |
|
skip_prompt=hide_full_prompt, |
|
skip_special_tokens=True, |
|
) |
|
llm.pipeline._forward_params = dict( |
|
max_new_tokens=512, |
|
temperature=temperature, |
|
do_sample=temperature > 0.0, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
streamer=streamer, |
|
) |
|
if stop_tokens is not None: |
|
llm.pipeline._forward_params["stopping_criteria"] = StoppingCriteriaList(stop_tokens) |
|
|
|
if do_rag: |
|
t1 = Thread(target=rag_chain.invoke, args=({"input": history[-1][0]},)) |
|
|
|
|
|
|
|
else: |
|
input_text = rag_prompt_template.format(input=history[-1][0], context="") |
|
t1 = Thread(target=llm.invoke, args=(input_text,)) |
|
|
|
|
|
|
|
t1.start() |
|
|
|
|
|
partial_text = "" |
|
for new_text in streamer: |
|
partial_text = text_processor(partial_text, new_text) |
|
history[-1][1] = partial_text |
|
|
|
yield history |
|
|
|
|
|
def request_cancel(): |
|
llm.pipeline.model.request.cancel() |
|
|
|
|
|
def clear_files(): |
|
return "Vector Store is Not ready" |
|
|
|
|
|
|
|
create_vectordb( |
|
text_example_path, |
|
"RecursiveCharacter", |
|
chunk_size=400, |
|
chunk_overlap=50, |
|
vector_search_top_k=10, |
|
vector_rerank_top_n=2, |
|
run_rerank=True, |
|
search_method="similarity_score_threshold", |
|
score_threshold=0.5, |
|
) |
|
with gr.Blocks( |
|
theme=gr.themes.Soft(), |
|
css=".disclaimer {font-variant-caps: all-small-caps;}", |
|
) as demo: |
|
gr.Markdown("""<h1><center>QA over Document</center></h1>""") |
|
gr.Markdown(f"""<center>Powered by OpenVINO and {llm_model_id} </center>""") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
docs = gr.File( |
|
label="Step 1: Load text files", |
|
value=text_example_path, |
|
file_count="multiple", |
|
file_types=[ |
|
".csv", |
|
".doc", |
|
".docx", |
|
".enex", |
|
".epub", |
|
".html", |
|
".md", |
|
".odt", |
|
".pdf", |
|
".ppt", |
|
".pptx", |
|
".txt", |
|
], |
|
) |
|
load_docs = gr.Button("Step 2: Build Vector Store", variant="primary") |
|
db_argument = gr.Accordion("Vector Store Configuration", open=False) |
|
with db_argument: |
|
spliter = gr.Dropdown( |
|
["Character", "RecursiveCharacter", "Markdown", "Chinese"], |
|
value="RecursiveCharacter", |
|
label="Text Spliter", |
|
info="Method used to splite the documents", |
|
multiselect=False, |
|
) |
|
|
|
chunk_size = gr.Slider( |
|
label="Chunk size", |
|
value=400, |
|
minimum=50, |
|
maximum=2000, |
|
step=50, |
|
interactive=True, |
|
info="Size of sentence chunk", |
|
) |
|
|
|
chunk_overlap = gr.Slider( |
|
label="Chunk overlap", |
|
value=50, |
|
minimum=0, |
|
maximum=400, |
|
step=10, |
|
interactive=True, |
|
info=("Overlap between 2 chunks"), |
|
) |
|
|
|
langchain_status = gr.Textbox( |
|
label="Vector Store Status", |
|
value="Vector Store is Ready", |
|
interactive=False, |
|
) |
|
do_rag = gr.Checkbox( |
|
value=True, |
|
label="RAG is ON", |
|
interactive=True, |
|
info="Whether to do RAG for generation", |
|
) |
|
with gr.Accordion("Generation Configuration", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
temperature = gr.Slider( |
|
label="Temperature", |
|
value=0.1, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
) |
|
with gr.Column(): |
|
with gr.Row(): |
|
top_p = gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=1.0, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.01, |
|
interactive=True, |
|
info=( |
|
"Sample from the smallest possible set of tokens whose cumulative probability " |
|
"exceeds top_p. Set to 1 to disable and sample from all tokens." |
|
), |
|
) |
|
with gr.Column(): |
|
with gr.Row(): |
|
top_k = gr.Slider( |
|
label="Top-k", |
|
value=50, |
|
minimum=0.0, |
|
maximum=200, |
|
step=1, |
|
interactive=True, |
|
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.", |
|
) |
|
with gr.Column(): |
|
with gr.Row(): |
|
repetition_penalty = gr.Slider( |
|
label="Repetition Penalty", |
|
value=1.1, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.1, |
|
interactive=True, |
|
info="Penalize repetition — 1.0 to disable.", |
|
) |
|
with gr.Column(scale=4): |
|
chatbot = gr.Chatbot( |
|
height=800, |
|
label="Step 3: Input Query", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
label="QA Message Box", |
|
placeholder="Chat Message Box", |
|
show_label=False, |
|
container=False, |
|
) |
|
with gr.Column(): |
|
with gr.Row(): |
|
submit = gr.Button("Submit", variant="primary") |
|
stop = gr.Button("Stop") |
|
clear = gr.Button("Clear") |
|
gr.Examples(examples, inputs=msg, label="Click on any example and press the 'Submit' button") |
|
retriever_argument = gr.Accordion("Retriever Configuration", open=True) |
|
with retriever_argument: |
|
with gr.Row(): |
|
with gr.Row(): |
|
do_rerank = gr.Checkbox( |
|
value=True, |
|
label="Rerank searching result", |
|
interactive=True, |
|
) |
|
hide_context = gr.Checkbox( |
|
value=True, |
|
label="Hide searching result in prompt", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
search_method = gr.Dropdown( |
|
["similarity_score_threshold", "similarity", "mmr"], |
|
value="similarity_score_threshold", |
|
label="Searching Method", |
|
info="Method used to search vector store", |
|
multiselect=False, |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
score_threshold = gr.Slider( |
|
0.01, |
|
0.99, |
|
value=0.5, |
|
step=0.01, |
|
label="Similarity Threshold", |
|
info="Only working for 'similarity score threshold' method", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
vector_rerank_top_n = gr.Slider( |
|
1, |
|
10, |
|
value=2, |
|
step=1, |
|
label="Rerank top n", |
|
info="Number of rerank results", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
vector_search_top_k = gr.Slider( |
|
1, |
|
50, |
|
value=10, |
|
step=1, |
|
label="Search top k", |
|
info="Search top k must >= Rerank top n", |
|
interactive=True, |
|
) |
|
docs.clear(clear_files, outputs=[langchain_status], queue=False) |
|
load_docs.click( |
|
create_vectordb, |
|
inputs=[docs, spliter, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], |
|
outputs=[langchain_status], |
|
queue=False, |
|
) |
|
submit_event = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, |
|
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag], |
|
chatbot, |
|
queue=True, |
|
) |
|
submit_click_event = submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, |
|
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag], |
|
chatbot, |
|
queue=True, |
|
) |
|
stop.click( |
|
fn=request_cancel, |
|
inputs=None, |
|
outputs=None, |
|
cancels=[submit_event, submit_click_event], |
|
queue=False, |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
vector_search_top_k.release( |
|
update_retriever, |
|
[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], |
|
outputs=[langchain_status], |
|
) |
|
vector_rerank_top_n.release( |
|
update_retriever, |
|
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], |
|
outputs=[langchain_status], |
|
) |
|
do_rerank.change( |
|
update_retriever, |
|
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], |
|
outputs=[langchain_status], |
|
) |
|
search_method.change( |
|
update_retriever, |
|
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], |
|
outputs=[langchain_status], |
|
) |
|
score_threshold.change( |
|
update_retriever, |
|
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold], |
|
outputs=[langchain_status], |
|
) |
|
|
|
|
|
demo.queue() |
|
|
|
|
|
|
|
demo.launch() |
|
|
|
|
|
|