import os import time import spaces import torch import gradio as gr import json from huggingface_hub import snapshot_download from pathlib import Path from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.protocol.instruct.tool_calls import Function, Tool from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy HF_TOKEN = os.environ.get("HF_TOKEN", None) PLACEHOLDER = """

Chat with JaeSwift's Enemy AI trained on Mistral

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } .examples { display: None; } """ # download model mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) # tokenizer device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") tekken = tokenizer.instruct_tokenizer.tokenizer tekken.special_token_policy = SpecialTokenPolicy.IGNORE model = Transformer.from_folder( mistral_models_path, device=device, dtype=torch.bfloat16) @spaces.GPU() def stream_chat( message: str, history: list, tools: str, temperature: float = 0.3, max_tokens: int = 1024, ): print(f'message: {message}') print(f'history: {history}') conversation = [] for prompt, answer in history: conversation.append(UserMessage(content=prompt)) conversation.append(AssistantMessage(content=answer)) # for item in history: # if item[role] == "user": # conversation.append(UserMessage(content=item[content])) # elif item[role] == "assistant": # conversation.append(AssistantMessage(content=item[content])) conversation.append(UserMessage(content=message)) print(f'history: {conversation}') tools = f'function_params = {{{tools}}}' local_namespace = {} exec(tools, globals(), local_namespace) function_params = local_namespace.get('function_params', {}) completion_request = ChatCompletionRequest( tools=[ Tool( function=Function( **function_params ) ) ] if tools else None, messages=conversation) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate( [tokens], model, max_tokens=max_tokens, temperature=temperature, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) for i in range(len(result)): time.sleep(0.05) yield result[: i + 1] tools_schema = """ "name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, """ chatbot = gr.Chatbot(height = 600, placeholder = PLACEHOLDER) with gr.Blocks(theme="citrus", css=CSS) as demo: gr.ChatInterface( fn = stream_chat, title = "Enemy-AI", chatbot = chatbot, # type="messages", fill_height = True, examples = [ ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], ["Tell me 5 cool fun facts about the British."], ["Can you help me with writing a code for my website?"], ], cache_examples = False, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False), additional_inputs=[ gr.Textbox( value = tools_schema, label = "Tools schema", lines = 10, render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens", render=False, ), ], ) # Add a clickable button linking to JaeSwift.com gr.HTML('JaeSwift.com') if __name__ == "__main__": demo.launch()