JPBianchi commited on
Commit
da04eef
1 Parent(s): a0cb228

I couldn't push from VS Code because LFS not working

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. models/.DS_Store +0 -0
  2. models/finetuned-all-MiniLM-L6-v2-300/.DS_Store +0 -0
  3. models/finetuned-all-MiniLM-L6-v2-300/1_Pooling/config.json +7 -0
  4. models/finetuned-all-MiniLM-L6-v2-300/README.md +91 -0
  5. models/finetuned-all-MiniLM-L6-v2-300/config.json +26 -0
  6. models/finetuned-all-MiniLM-L6-v2-300/config_sentence_transformers.json +7 -0
  7. models/finetuned-all-MiniLM-L6-v2-300/eval/Information-Retrieval_evaluation_results.csv +11 -0
  8. models/finetuned-all-MiniLM-L6-v2-300/modules.json +20 -0
  9. models/finetuned-all-MiniLM-L6-v2-300/pytorch_model.bin +3 -0
  10. models/finetuned-all-MiniLM-L6-v2-300/sentence_bert_config.json +4 -0
  11. models/finetuned-all-MiniLM-L6-v2-300/special_tokens_map.json +7 -0
  12. models/finetuned-all-MiniLM-L6-v2-300/tokenizer.json +0 -0
  13. models/finetuned-all-MiniLM-L6-v2-300/tokenizer_config.json +22 -0
  14. models/finetuned-all-MiniLM-L6-v2-300/vocab.txt +0 -0
  15. models/local.txt +1 -0
  16. models/models/.DS_Store +0 -0
  17. models/models/all-MiniLM-L6-v2/.DS_Store +0 -0
  18. models/models/all-MiniLM-L6-v2/1_Pooling/config.json +7 -0
  19. models/models/all-MiniLM-L6-v2/README.md +176 -0
  20. models/models/all-MiniLM-L6-v2/config.json +26 -0
  21. models/models/all-MiniLM-L6-v2/config_sentence_transformers.json +7 -0
  22. models/models/all-MiniLM-L6-v2/modules.json +20 -0
  23. models/models/all-MiniLM-L6-v2/pytorch_model.bin +3 -0
  24. models/models/all-MiniLM-L6-v2/sentence_bert_config.json +4 -0
  25. models/models/all-MiniLM-L6-v2/special_tokens_map.json +7 -0
  26. models/models/all-MiniLM-L6-v2/tokenizer.json +0 -0
  27. models/models/all-MiniLM-L6-v2/tokenizer_config.json +22 -0
  28. models/models/all-MiniLM-L6-v2/vocab.txt +0 -0
  29. models/models/all-mpnet-base-v2/.DS_Store +0 -0
  30. models/models/all-mpnet-base-v2/1_Pooling/config.json +7 -0
  31. models/models/all-mpnet-base-v2/README.md +176 -0
  32. models/models/all-mpnet-base-v2/config.json +24 -0
  33. models/models/all-mpnet-base-v2/config_sentence_transformers.json +7 -0
  34. models/models/all-mpnet-base-v2/modules.json +20 -0
  35. models/models/all-mpnet-base-v2/pytorch_model.bin +3 -0
  36. models/models/all-mpnet-base-v2/sentence_bert_config.json +4 -0
  37. models/models/all-mpnet-base-v2/special_tokens_map.json +15 -0
  38. models/models/all-mpnet-base-v2/tokenizer.json +0 -0
  39. models/models/all-mpnet-base-v2/tokenizer_config.json +22 -0
  40. models/models/all-mpnet-base-v2/vocab.txt +0 -0
  41. models/models/finetuned-all-mpnet-base-v2-300/.DS_Store +0 -0
  42. models/models/finetuned-all-mpnet-base-v2-300/1_Pooling/config.json +7 -0
  43. models/models/finetuned-all-mpnet-base-v2-300/README.md +91 -0
  44. models/models/finetuned-all-mpnet-base-v2-300/config.json +24 -0
  45. models/models/finetuned-all-mpnet-base-v2-300/config_sentence_transformers.json +7 -0
  46. models/models/finetuned-all-mpnet-base-v2-300/eval/Information-Retrieval_evaluation_results.csv +12 -0
  47. models/models/finetuned-all-mpnet-base-v2-300/modules.json +20 -0
  48. models/models/finetuned-all-mpnet-base-v2-300/pytorch_model.bin +3 -0
  49. models/models/finetuned-all-mpnet-base-v2-300/sentence_bert_config.json +4 -0
  50. models/models/finetuned-all-mpnet-base-v2-300/special_tokens_map.json +15 -0
models/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/finetuned-all-MiniLM-L6-v2-300/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/finetuned-all-MiniLM-L6-v2-300/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
models/finetuned-all-MiniLM-L6-v2-300/README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+
8
+ ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Evaluation Results
38
+
39
+ <!--- Describe how your model was evaluated -->
40
+
41
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
+
43
+
44
+ ## Training
45
+ The model was trained with the parameters:
46
+
47
+ **DataLoader**:
48
+
49
+ `torch.utils.data.dataloader.DataLoader` of length 10 with parameters:
50
+ ```
51
+ {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
+ ```
53
+
54
+ **Loss**:
55
+
56
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
57
+ ```
58
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
59
+ ```
60
+
61
+ Parameters of the fit()-Method:
62
+ ```
63
+ {
64
+ "epochs": 10,
65
+ "evaluation_steps": 50,
66
+ "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
67
+ "max_grad_norm": 1,
68
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
+ "optimizer_params": {
70
+ "lr": 2e-05
71
+ },
72
+ "scheduler": "WarmupLinear",
73
+ "steps_per_epoch": null,
74
+ "warmup_steps": 10,
75
+ "weight_decay": 0.01
76
+ }
77
+ ```
78
+
79
+
80
+ ## Full Model Architecture
81
+ ```
82
+ SentenceTransformer(
83
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
84
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
85
+ (2): Normalize()
86
+ )
87
+ ```
88
+
89
+ ## Citing & Authors
90
+
91
+ <!--- Describe where people can find more information -->
models/finetuned-all-MiniLM-L6-v2-300/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/jpb2/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.33.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
models/finetuned-all-MiniLM-L6-v2-300/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
models/finetuned-all-MiniLM-L6-v2-300/eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
2
+ 0,-1,0.9,0.95,0.96,0.98,0.9,0.9,0.31666666666666665,0.95,0.19199999999999995,0.96,0.09799999999999998,0.98,0.9282619047619047,0.9407679373201044,0.9287259199134199,0.9,0.95,0.96,0.98,0.9,0.9,0.31666666666666665,0.95,0.19199999999999995,0.96,0.09799999999999998,0.98,0.9282619047619047,0.9407679373201044,0.9287259199134199
3
+ 1,-1,0.92,0.94,0.98,0.98,0.92,0.92,0.3133333333333333,0.94,0.19599999999999995,0.98,0.09799999999999998,0.98,0.94,0.9498456573943649,0.9404494949494949,0.92,0.94,0.98,0.98,0.92,0.92,0.3133333333333333,0.94,0.19599999999999995,0.98,0.09799999999999998,0.98,0.94,0.9498456573943649,0.9404494949494949
4
+ 2,-1,0.92,0.96,0.98,0.98,0.92,0.92,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9428333333333333,0.952103186260223,0.9433273809523809,0.92,0.96,0.98,0.98,0.92,0.92,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9428333333333333,0.952103186260223,0.9433273809523809
5
+ 3,-1,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.9441648659463786,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.9441648659463786
6
+ 4,-1,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.944189247311828,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.944189247311828
7
+ 5,-1,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.94415837621498,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.94415837621498
8
+ 6,-1,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.9441678187403995,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.9441678187403995
9
+ 7,-1,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.944174432497013,0.92,0.97,0.98,0.98,0.92,0.92,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9436666666666667,0.9527964206794891,0.944174432497013
10
+ 8,-1,0.92,0.96,0.98,0.98,0.92,0.92,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9428333333333333,0.952103186260223,0.9433410991636799,0.92,0.96,0.98,0.98,0.92,0.92,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9428333333333333,0.952103186260223,0.9433410991636799
11
+ 9,-1,0.92,0.96,0.98,0.98,0.92,0.92,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9428333333333333,0.952103186260223,0.943351851851852,0.92,0.96,0.98,0.98,0.92,0.92,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9428333333333333,0.952103186260223,0.943351851851852
models/finetuned-all-MiniLM-L6-v2-300/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
models/finetuned-all-MiniLM-L6-v2-300/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19042a66f72a393f7ac7c494c22ea0e8fa32c4108d0f6f3bca94be5de46d5ad9
3
+ size 90885737
models/finetuned-all-MiniLM-L6-v2-300/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
models/finetuned-all-MiniLM-L6-v2-300/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
models/finetuned-all-MiniLM-L6-v2-300/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/finetuned-all-MiniLM-L6-v2-300/tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "max_length": 128,
8
+ "model_max_length": 512,
9
+ "never_split": null,
10
+ "pad_to_multiple_of": null,
11
+ "pad_token": "[PAD]",
12
+ "pad_token_type_id": 0,
13
+ "padding_side": "right",
14
+ "sep_token": "[SEP]",
15
+ "stride": 0,
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "BertTokenizer",
19
+ "truncation_side": "right",
20
+ "truncation_strategy": "longest_first",
21
+ "unk_token": "[UNK]"
22
+ }
models/finetuned-all-MiniLM-L6-v2-300/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/local.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Used to let streamlit if it's running locally or online
models/models/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/models/all-MiniLM-L6-v2/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/models/all-MiniLM-L6-v2/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
models/models/all-MiniLM-L6-v2/README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ language: en
8
+ license: apache-2.0
9
+ datasets:
10
+ - s2orc
11
+ - flax-sentence-embeddings/stackexchange_xml
12
+ - ms_marco
13
+ - gooaq
14
+ - yahoo_answers_topics
15
+ - code_search_net
16
+ - search_qa
17
+ - eli5
18
+ - snli
19
+ - multi_nli
20
+ - wikihow
21
+ - natural_questions
22
+ - trivia_qa
23
+ - embedding-data/sentence-compression
24
+ - embedding-data/flickr30k-captions
25
+ - embedding-data/altlex
26
+ - embedding-data/simple-wiki
27
+ - embedding-data/QQP
28
+ - embedding-data/SPECTER
29
+ - embedding-data/PAQ_pairs
30
+ - embedding-data/WikiAnswers
31
+
32
+ ---
33
+
34
+
35
+ # all-MiniLM-L6-v2
36
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
37
+
38
+ ## Usage (Sentence-Transformers)
39
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
40
+
41
+ ```
42
+ pip install -U sentence-transformers
43
+ ```
44
+
45
+ Then you can use the model like this:
46
+ ```python
47
+ from sentence_transformers import SentenceTransformer
48
+ sentences = ["This is an example sentence", "Each sentence is converted"]
49
+
50
+ model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
51
+ embeddings = model.encode(sentences)
52
+ print(embeddings)
53
+ ```
54
+
55
+ ## Usage (HuggingFace Transformers)
56
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
57
+
58
+ ```python
59
+ from transformers import AutoTokenizer, AutoModel
60
+ import torch
61
+ import torch.nn.functional as F
62
+
63
+ #Mean Pooling - Take attention mask into account for correct averaging
64
+ def mean_pooling(model_output, attention_mask):
65
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
66
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
67
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
68
+
69
+
70
+ # Sentences we want sentence embeddings for
71
+ sentences = ['This is an example sentence', 'Each sentence is converted']
72
+
73
+ # Load model from HuggingFace Hub
74
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
75
+ model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
76
+
77
+ # Tokenize sentences
78
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
79
+
80
+ # Compute token embeddings
81
+ with torch.no_grad():
82
+ model_output = model(**encoded_input)
83
+
84
+ # Perform pooling
85
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
86
+
87
+ # Normalize embeddings
88
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
89
+
90
+ print("Sentence embeddings:")
91
+ print(sentence_embeddings)
92
+ ```
93
+
94
+ ## Evaluation Results
95
+
96
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
97
+
98
+ ------
99
+
100
+ ## Background
101
+
102
+ The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
103
+ contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
104
+ 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
105
+
106
+ We developped this model during the
107
+ [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
108
+ organized by Hugging Face. We developped this model as part of the project:
109
+ [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
110
+
111
+ ## Intended uses
112
+
113
+ Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
114
+ the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
115
+
116
+ By default, input text longer than 256 word pieces is truncated.
117
+
118
+
119
+ ## Training procedure
120
+
121
+ ### Pre-training
122
+
123
+ We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
124
+
125
+ ### Fine-tuning
126
+
127
+ We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
128
+ We then apply the cross entropy loss by comparing with true pairs.
129
+
130
+ #### Hyper parameters
131
+
132
+ We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
133
+ We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
134
+ a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
135
+
136
+ #### Training data
137
+
138
+ We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
139
+ We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
140
+
141
+
142
+ | Dataset | Paper | Number of training tuples |
143
+ |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
144
+ | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
145
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
146
+ | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
147
+ | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
148
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
149
+ | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
150
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
151
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
152
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
153
+ | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
154
+ | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
155
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
156
+ | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
157
+ | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
158
+ | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
159
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
160
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
161
+ | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
162
+ | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
163
+ | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
164
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
165
+ | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
166
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
167
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
168
+ | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
169
+ | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
170
+ | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
171
+ | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
172
+ | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
173
+ | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
174
+ | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
175
+ | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
176
+ | **Total** | | **1,170,060,424** |
models/models/all-MiniLM-L6-v2/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/jpb2/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.33.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
models/models/all-MiniLM-L6-v2/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
models/models/all-MiniLM-L6-v2/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
models/models/all-MiniLM-L6-v2/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72ea817e757ec2f5aea799d9be2f38ea29fadbeadcc63952feacc79524ccd8c5
3
+ size 90885737
models/models/all-MiniLM-L6-v2/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
models/models/all-MiniLM-L6-v2/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
models/models/all-MiniLM-L6-v2/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/models/all-MiniLM-L6-v2/tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "max_length": 128,
8
+ "model_max_length": 512,
9
+ "never_split": null,
10
+ "pad_to_multiple_of": null,
11
+ "pad_token": "[PAD]",
12
+ "pad_token_type_id": 0,
13
+ "padding_side": "right",
14
+ "sep_token": "[SEP]",
15
+ "stride": 0,
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "BertTokenizer",
19
+ "truncation_side": "right",
20
+ "truncation_strategy": "longest_first",
21
+ "unk_token": "[UNK]"
22
+ }
models/models/all-MiniLM-L6-v2/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/models/all-mpnet-base-v2/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/models/all-mpnet-base-v2/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
models/models/all-mpnet-base-v2/README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ language: en
8
+ license: apache-2.0
9
+ datasets:
10
+ - s2orc
11
+ - flax-sentence-embeddings/stackexchange_xml
12
+ - ms_marco
13
+ - gooaq
14
+ - yahoo_answers_topics
15
+ - code_search_net
16
+ - search_qa
17
+ - eli5
18
+ - snli
19
+ - multi_nli
20
+ - wikihow
21
+ - natural_questions
22
+ - trivia_qa
23
+ - embedding-data/sentence-compression
24
+ - embedding-data/flickr30k-captions
25
+ - embedding-data/altlex
26
+ - embedding-data/simple-wiki
27
+ - embedding-data/QQP
28
+ - embedding-data/SPECTER
29
+ - embedding-data/PAQ_pairs
30
+ - embedding-data/WikiAnswers
31
+
32
+ ---
33
+
34
+
35
+ # all-mpnet-base-v2
36
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
37
+
38
+ ## Usage (Sentence-Transformers)
39
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
40
+
41
+ ```
42
+ pip install -U sentence-transformers
43
+ ```
44
+
45
+ Then you can use the model like this:
46
+ ```python
47
+ from sentence_transformers import SentenceTransformer
48
+ sentences = ["This is an example sentence", "Each sentence is converted"]
49
+
50
+ model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
51
+ embeddings = model.encode(sentences)
52
+ print(embeddings)
53
+ ```
54
+
55
+ ## Usage (HuggingFace Transformers)
56
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
57
+
58
+ ```python
59
+ from transformers import AutoTokenizer, AutoModel
60
+ import torch
61
+ import torch.nn.functional as F
62
+
63
+ #Mean Pooling - Take attention mask into account for correct averaging
64
+ def mean_pooling(model_output, attention_mask):
65
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
66
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
67
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
68
+
69
+
70
+ # Sentences we want sentence embeddings for
71
+ sentences = ['This is an example sentence', 'Each sentence is converted']
72
+
73
+ # Load model from HuggingFace Hub
74
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
75
+ model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
76
+
77
+ # Tokenize sentences
78
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
79
+
80
+ # Compute token embeddings
81
+ with torch.no_grad():
82
+ model_output = model(**encoded_input)
83
+
84
+ # Perform pooling
85
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
86
+
87
+ # Normalize embeddings
88
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
89
+
90
+ print("Sentence embeddings:")
91
+ print(sentence_embeddings)
92
+ ```
93
+
94
+ ## Evaluation Results
95
+
96
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v2)
97
+
98
+ ------
99
+
100
+ ## Background
101
+
102
+ The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
103
+ contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
104
+ 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
105
+
106
+ We developped this model during the
107
+ [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
108
+ organized by Hugging Face. We developped this model as part of the project:
109
+ [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
110
+
111
+ ## Intended uses
112
+
113
+ Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
114
+ the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
115
+
116
+ By default, input text longer than 384 word pieces is truncated.
117
+
118
+
119
+ ## Training procedure
120
+
121
+ ### Pre-training
122
+
123
+ We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
124
+
125
+ ### Fine-tuning
126
+
127
+ We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
128
+ We then apply the cross entropy loss by comparing with true pairs.
129
+
130
+ #### Hyper parameters
131
+
132
+ We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
133
+ We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
134
+ a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
135
+
136
+ #### Training data
137
+
138
+ We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
139
+ We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
140
+
141
+
142
+ | Dataset | Paper | Number of training tuples |
143
+ |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
144
+ | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
145
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
146
+ | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
147
+ | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
148
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
149
+ | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
150
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
151
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
152
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
153
+ | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
154
+ | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
155
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
156
+ | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
157
+ | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
158
+ | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
159
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
160
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
161
+ | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
162
+ | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
163
+ | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
164
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
165
+ | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
166
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
167
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
168
+ | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
169
+ | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
170
+ | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
171
+ | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
172
+ | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
173
+ | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
174
+ | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
175
+ | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
176
+ | **Total** | | **1,170,060,424** |
models/models/all-mpnet-base-v2/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/jpb2/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.33.1",
23
+ "vocab_size": 30527
24
+ }
models/models/all-mpnet-base-v2/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
models/models/all-mpnet-base-v2/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
models/models/all-mpnet-base-v2/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70be8a5840b262b79cbbad82c69c96f6476bddc373182a012f1bcb251865322b
3
+ size 438009257
models/models/all-mpnet-base-v2/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
models/models/all-mpnet-base-v2/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }
models/models/all-mpnet-base-v2/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/models/all-mpnet-base-v2/tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "do_lower_case": true,
6
+ "eos_token": "</s>",
7
+ "mask_token": "<mask>",
8
+ "max_length": 128,
9
+ "model_max_length": 512,
10
+ "pad_to_multiple_of": null,
11
+ "pad_token": "<pad>",
12
+ "pad_token_type_id": 0,
13
+ "padding_side": "right",
14
+ "sep_token": "</s>",
15
+ "stride": 0,
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "MPNetTokenizer",
19
+ "truncation_side": "right",
20
+ "truncation_strategy": "longest_first",
21
+ "unk_token": "[UNK]"
22
+ }
models/models/all-mpnet-base-v2/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/models/finetuned-all-mpnet-base-v2-300/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/models/finetuned-all-mpnet-base-v2-300/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
models/models/finetuned-all-mpnet-base-v2-300/README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+
8
+ ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Evaluation Results
38
+
39
+ <!--- Describe how your model was evaluated -->
40
+
41
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
+
43
+
44
+ ## Training
45
+ The model was trained with the parameters:
46
+
47
+ **DataLoader**:
48
+
49
+ `torch.utils.data.dataloader.DataLoader` of length 10 with parameters:
50
+ ```
51
+ {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
+ ```
53
+
54
+ **Loss**:
55
+
56
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
57
+ ```
58
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
59
+ ```
60
+
61
+ Parameters of the fit()-Method:
62
+ ```
63
+ {
64
+ "epochs": 10,
65
+ "evaluation_steps": 50,
66
+ "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
67
+ "max_grad_norm": 1,
68
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
+ "optimizer_params": {
70
+ "lr": 2e-05
71
+ },
72
+ "scheduler": "WarmupLinear",
73
+ "steps_per_epoch": null,
74
+ "warmup_steps": 10,
75
+ "weight_decay": 0.01
76
+ }
77
+ ```
78
+
79
+
80
+ ## Full Model Architecture
81
+ ```
82
+ SentenceTransformer(
83
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
84
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
85
+ (2): Normalize()
86
+ )
87
+ ```
88
+
89
+ ## Citing & Authors
90
+
91
+ <!--- Describe where people can find more information -->
models/models/finetuned-all-mpnet-base-v2-300/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/jpb2/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.33.1",
23
+ "vocab_size": 30527
24
+ }
models/models/finetuned-all-mpnet-base-v2-300/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
models/models/finetuned-all-mpnet-base-v2-300/eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
2
+ 0,-1,0.9,0.96,0.97,0.97,0.9,0.9,0.31999999999999995,0.96,0.19399999999999995,0.97,0.09699999999999998,0.97,0.9308333333333333,0.9408532532593068,0.9328242955874534,0.9,0.96,0.97,0.97,0.9,0.9,0.31999999999999995,0.96,0.19399999999999995,0.97,0.09699999999999998,0.97,0.9308333333333333,0.9408532532593068,0.9328242955874534
3
+ 0,-1,0.91,0.96,0.97,0.97,0.91,0.91,0.31999999999999995,0.96,0.19399999999999995,0.97,0.09699999999999998,0.97,0.9358333333333333,0.9445439557235923,0.9377741702741703,0.91,0.96,0.97,0.97,0.91,0.91,0.31999999999999995,0.96,0.19399999999999995,0.97,0.09699999999999998,0.97,0.9358333333333333,0.9445439557235923,0.9377741702741703
4
+ 1,-1,0.91,0.96,0.98,0.99,0.91,0.91,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09899999999999999,0.99,0.94075,0.9528764300995095,0.9410064102564103,0.91,0.96,0.98,0.99,0.91,0.91,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09899999999999999,0.99,0.94075,0.9528764300995095,0.9410064102564103
5
+ 2,-1,0.93,0.97,0.98,0.99,0.93,0.93,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09899999999999999,0.99,0.9520833333333333,0.9613893069557349,0.9523958333333334,0.93,0.97,0.98,0.99,0.93,0.93,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09899999999999999,0.99,0.9520833333333333,0.9613893069557349,0.9523958333333334
6
+ 3,-1,0.91,0.97,0.98,0.99,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09899999999999999,0.99,0.9402777777777779,0.9525542556802321,0.940600358422939,0.91,0.97,0.98,0.99,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09899999999999999,0.99,0.9402777777777779,0.9525542556802321,0.940600358422939
7
+ 4,-1,0.91,0.97,0.98,0.99,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09899999999999999,0.99,0.9401666666666667,0.9524346039867712,0.9404892473118279,0.91,0.97,0.98,0.99,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09899999999999999,0.99,0.9401666666666667,0.9524346039867712,0.9404892473118279
8
+ 5,-1,0.91,0.96,0.98,0.98,0.91,0.91,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9383333333333335,0.9488507213043262,0.9395549242424243,0.91,0.96,0.98,0.98,0.91,0.91,0.31999999999999995,0.96,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9383333333333335,0.9488507213043262,0.9395549242424243
9
+ 6,-1,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575
10
+ 7,-1,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575
11
+ 8,-1,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575
12
+ 9,-1,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575,0.91,0.97,0.98,0.98,0.91,0.91,0.3233333333333333,0.97,0.19599999999999995,0.98,0.09799999999999998,0.98,0.9391666666666666,0.9495439557235923,0.9403882575757575
models/models/finetuned-all-mpnet-base-v2-300/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
models/models/finetuned-all-mpnet-base-v2-300/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4f6804604fd0b541a71c6cd3d2299fe404e577ab5c1a1b1aa778bf07da4d2cb
3
+ size 438009257
models/models/finetuned-all-mpnet-base-v2-300/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
models/models/finetuned-all-mpnet-base-v2-300/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }