File size: 16,383 Bytes
0481dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import json
import requests
import feedparser
from typing import List
import pynecone as pc
from pygooglenews import GoogleNews
from newspaper import Article, Config
import nltk
import time
import openai
nltk.download('punkt')


class State(pc.State):
    text: str = "Type something..."
    titles: List[List] = []
    img_src: str = ""
    resource_href: List = []
    src_meta: List[List] = []
    summary: str = ""
    middle_summary_state:str = ""
    openai_key_show: bool = False
    _valid_state = ["info", "error", "success"]
    is_valid_code: str = _valid_state[0]
    _engine = GoogleNews(lang="en", country="US")
    _USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
    _article_config = Config()
    _article_config.request_timeout = 10
    # _article_config.follow_meta_refresh=True
    _article_config.browser_user_agent = _USER_AGENT
    _prompt = '''
            Please help me gather data from various media sources above and analyze it across multiple articles to recognize similarities and differences. 
            For instance, if several articles report on the launch of a new Tesla car, one source might state the retail price as $10, while another mentions it as $15. 
            The similarities between the articles would be that they all cover the new car launch, while the differences would be the varying retail prices reported. 
            The final output should include a summary paragraph followed by a list of similarities and differences, 
            where the differences are presented in the format of source A reporting a price of $10, while source B reports a price of $15.
            response should be formed organized and neat in html layout.
        '''

    show_progress = False
    tmp_openai_key_text = ""
    OPENAI_API_KEY = ""  # os.environ["my_openai_key"]
    _ENDPOINT_URL = 'https://api.openai.com/v1/chat/completions'
    _OPENAI_HEADER: dict = {}

    def toggle_progress(self):
        self.show_progress = not self.show_progress

    def search(self):
        self.summary = ""
        self.middle_summary_state = ""
        self.titles = []
        self.src_meta = []
        if self.text != "":
            src_response = self._engine.search(self.text, when="3d")
            # title, src, date, url
            for t in src_response["entries"]:
                self.titles.append(t["title"].split(" - ")[0])
                self.src_meta.append(
                    [t["source"]["title"], t["published"], t["link"]])

    def set_text(self, text):
        self.text = f"intext:{text}"

    def set_openai_key_text(self, text):
        self.tmp_openai_key_text = text

    def submit_openai_key(self):
        # Define the API endpoint URL
        endpoint_url = "https://api.openai.com/v1/models"

        # Set the headers for the API request
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.tmp_openai_key_text}"
        }
        # Send the API request
        response = requests.get(endpoint_url, headers=headers)

        self.is_valid_code = self._valid_state[int(
            response.status_code == 200) + 1]

        if self.is_valid_code == "success":
            self.OPENAI_API_KEY = self.tmp_openai_key_text
            self._OPENAI_HEADER = {"Content-Type": "application/json",
                                   "Authorization": f"Bearer {self.OPENAI_API_KEY}"
                                   }

    def summarize(self, cur_title):
        cur_index = self.titles.index(cur_title)
        cur_src_meta = self.fetch_info(self.src_meta[cur_index][2])
        print(self.is_valid_code)
        self.middle_summary_state += "<strong>Start related content ........</strong>\n"
        if cur_src_meta is not None and self.is_valid_code == "success":
            self.img_src = cur_src_meta["image"]
            self.middle_summary_state += "<strong>{}</strong>\n".format(f"Processing Main Article: {cur_src_meta['title']}")
            related = self._engine.search(cur_src_meta['title'], when="7d")
            # print("----------- Finish finding related news")
            summary_list = [cur_src_meta["body"]]
            self.resource_href.append(cur_src_meta["url"])
            r_i = 1
            for r in related["entries"][1:6]:
                # print(f"+++++++++++++: {r['title']}")
                r_meta = self.fetch_info(r["link"])
                if r_meta is not None:
                    summary_list.append(r_meta["body"])
                    self.resource_href.append(r_meta["url"])
                    # print(f"-------------: {r['title']}")
                    self.middle_summary_state += "<strong>{}</strong>\n".format(f"Processing Related Article {r_i}: {r['title']}")
                    r_i += 1
                    time.sleep(3)

            # self.summary = "\n".join(summary_list)
            self.call_openai(summary_list)
            # print("SUMMARY: ")
            # print(self.summary)
        elif cur_src_meta is not None and self.is_valid_code != "success":
            self.summary = "<strong>Please set up your openai api-key before running NewsGPT</strong>"
        else:
            self.summary = "<strong>Please set up your openai api-key before running NewsGPT</strong>"
    
    @pc.var
    def get_summary(self):
        if self.summary == "":
            return self.middle_summary_state
        else:
            return self.summary

    def fetch_info(self, rss_feed):
        news_feed = feedparser.parse(rss_feed)
        article = Article(news_feed["href"])  # , config=self._article_config)
        try:
            article.download()
            article.parse()
            article.nlp()
            return \
                {
                    "title": article.title,
                    "body": article.text,
                    "summary": article.summary,
                    "image": article.top_image,
                    "authors": article.authors,
                    "keywords": article.keywords,
                    "url": article.url
                }
        except:
            return None

    def call_openai(self, article_list):
        summary_list = []
        error_list = []
        # print("All Articles:")
        # print(". ".join(article_list))
        s_i = 1
        for idx, r in enumerate(article_list):
            messages = [
                {"role": "system", "content": "You are a very professional news artlce summization and analysis agent."},
                {"role": "user", "content": r + " " + "summarize the article above and preserve information on \
                                                           the following concepts: Personnel/Human Resources, Time and Place, Object/Thing. "},
            ]

            data = {
                "model": "gpt-3.5-turbo",
                "messages": messages,
                "temperature": 0.7
            }

            try:
                response = requests.post(
                    url=self._ENDPOINT_URL, headers=self._OPENAI_HEADER, data=json.dumps(data))
                response_json = response.json()
                # print(response_json)
                answer = response_json["choices"][0]["message"]["content"].strip(
                )
                summary_list.append(answer)
                error_list.append("")
                self._middle_summary_state += "<strong>{}</strong>".format(f"Summarizing Article {s_i} ......")
            except Exception as e:
                error_list.append(e)

        if len(summary_list):
            summary_ = ", ".join([f"article {si} summary: {s}" for si, s in enumerate(
                summary_list)]) + self._prompt
            messages = [
                {"role": "system", "content": "You are a very professional news artlce summization and analysis agent."},
                {"role": "user", "content": summary_},
            ]

            data = {
                "model": "gpt-3.5-turbo",
                "messages": messages,
                "temperature": 0.7
            }
            # print(messages)
            self._middle_summary_state += "<strong>{}</strong>".format(f"Analyzing All Articles .....")
            try:
                response = requests.post(
                    url=self._ENDPOINT_URL, headers=self._OPENAI_HEADER, data=json.dumps(data))
                response_json = response.json()
                # print(response_json)
                self.summary = \
                    f"""
                                Reference article number: {len(summary_list)}  
                                {response_json["choices"][0]["message"]["content"].strip()}
                                """
                # print("Finish Calling OPENAI")
            except Exception as e:
                self.summary = e
        else:
            # print(error_list)
            self.summary = "Something went wrong"

    def clear(self):
        self.summary = ""
        self.titles = []
        self.src_meta = []

    def openai_setup_window(self):
        self.openai_key_show = not (self.openai_key_show)

    @pc.var
    def check_openai_setup(self):
        return self.OPENAI_API_KEY != ""

article_box_style = {
    "bg": "rgba(255,255,255, 0.5)",
    "box_shadow": "3px -3px 7px #cccecf, -3px 3px 7px #ffffff",
    "border_radius": "10px",
    "height": "80px",
    "width": "100%",
    "margin_top": "0.75em",
    "align_items": "left"
}

title_style = {
    "padding": "1em",
    "font_weight": "bold",
    "font_size": "0.9em",
}

def article_card(data):
    return \
        pc.container(
            pc.box(
                pc.text(
                    data,
                    style=title_style
                ),
                on_click=State.summarize(data),
                style=article_box_style,
                _hover={"cursor": "pointer"}
            ),
        )


def home():
    """The home page."""
    # return  pc.center(
    return \
        pc.vstack(
            pc.box(
                pc.flex(
                    pc.link(
                        pc.text(
                            "NewsGPT",
                            font_size="1.5em",
                            font_weight=600,
                            background_image="linear-gradient(271.68deg, #EE756A 0.75%, #756AEE 88.52%)",
                            background_clip="text",
                            margin_left="20px"
                        ),
                        href="/",
                        on_click=State.clear
                    ),
                    pc.spacer(),
                    pc.hstack(
                        pc.input(
                            placeholder="New Topic?",
                            on_blur=State.set_text,
                            border_radius="10px",
                            width="450px"
                        ),
                        pc.button(
                            "Search",
                            bg="lightgreen",
                            color="black",
                            is_active=True,
                            on_click=State.search,
                            size="sm",
                            border_radius="1em",
                            variant="outline",
                        ),
                    ),
                    pc.spacer(),
                    pc.button(
                        "OpenAI-KEY",
                        bg="lightgreen",
                        color="black",
                        is_active=True,
                        on_click=State.openai_setup_window,
                        size="sm",
                        border_radius="1em",
                        variant="outline",
                        margin_right="20px"
                    ),
                    pc.alert_dialog(
                        pc.alert_dialog_overlay(
                            pc.alert_dialog_content(
                                pc.alert_dialog_header(
                                    "OpenAI API-Key Setup"),
                                pc.alert_dialog_body(
                                    pc.container(
                                        pc.input(
                                            placeholder="OpenAI Key",
                                            on_blur=State.set_openai_key_text,
                                            border_radius="10px",
                                            width="100%",
                                            type_="password",
                                        ),
                                    ),
                                ),
                                pc.alert_dialog_footer(
                                    pc.vstack(
                                        pc.alert(
                                            pc.alert_icon(),
                                            pc.alert_title(
                                                "set api-key   [" +
                                                State.is_valid_code + "]"
                                            ),
                                            status=State.is_valid_code
                                        ),
                                        pc.hstack(
                                            pc.button(
                                                "Submit",
                                                on_click=State.submit_openai_key,
                                            ),
                                            pc.button(
                                                "Close",
                                                on_click=State.openai_setup_window,
                                            ),
                                        ),
                                    ),
                                ),
                                align_items="center"
                            ),
                        ),
                        is_open=State.openai_key_show,
                    ),
                    align_items="center"
                ),
                bg="rgba(255,255,255, 0.7)",
                backdrop_filter="blur(10px)",
                padding_y=["0.8em", "0.8em", "0.5em"],
                border_bottom="0.08em solid rgba(32, 32, 32, .3)",
                position="sticky",
                width="80%",
                top="20px",
                z_index="99",
                justify="center",
                border_radius="20px",
            ),
            pc.grid(
                pc.grid_item(pc.spacer(), row_span=5, col_span=1),
                pc.grid_item(
                    pc.vstack(
                        pc.foreach(
                            State.titles,
                            article_card
                        ),
                        overflow="auto",
                        height="875px"
                    ),
                    row_span=5,
                    col_span=3,
                    # bg="rgba(255,255,255, 0.9)",
                    margin_top="3em",
                    border_radius="20px",
                    box_shadow="7px -7px 14px #cccecf, -7px 7px 14px #ffffff"
                ),
                # pc.grid_item(pc.spacer(), row_span=5, col_span=1),
                pc.grid_item(
                    pc.box(
                        pc.html(State.get_summary, padding="10px"),
                        height="875px",
                        width="100%",
                        overflow="auto",
                    ),
                    row_span=5,
                    col_span=3,
                    margin_top="3em",
                    border_radius="20px",
                    margin_left="50px",
                    box_shadow="7px -7px 14px #cccecf, -7px 7px 14px #ffffff"
                ),
                template_rows="repeat(5, 1fr)",
                template_columns="repeat(8, 1fr)",
                width="100%",
            ),
            pc.spacer(),
            background="radial-gradient(circle at 22% 11%,rgba(62, 180, 137,.20),hsla(0,0%,100%,0) 19%),radial-gradient(circle at 82% 25%,rgba(33,150,243,.18),hsla(0,0%,100%,0) 35%),radial-gradient(circle at 25% 61%,rgba(250, 128, 114, .28),hsla(0,0%,100%,0) 55%)",
        )