File size: 7,703 Bytes
10d6a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os, logging
from typing import List, Any
import pandas as pd 
from weaviate.classes.config import Property, DataType

from .weaviate_interface_v4 import WeaviateWCS, WeaviateIndexer
from .logger import logger 

from settings import parquet_file

class VectorStore:
    def __init__(self, model_path:str = 'sentence-transformers/all-mpnet-base-v2'):
        # we can create several instances to test various models, especially if we finetune one
        
        self.finrag_properties = [  
                Property(name='filename',
                         data_type=DataType.TEXT,
                         description='Name of the file',
                         index_filterable=True,
                         index_searchable=True),
                # Property(name='keywords',
                #          data_type=DataType.TEXT_ARRAY,
                #          description='Keywords associated with the file',
                #          index_filterable=True,
                #          index_searchable=True),
                Property(name='content',
                         data_type=DataType.TEXT,
                         description='Splits of the article',
                         index_filterable=True,
                         index_searchable=True),
              ]

        self.class_name = "FinRag_all-mpnet-base-v2"

        self.class_config = {'classes': [

                            {"class": self.class_name,
                            
                            "description": "Financial reports", 
                            
                            "vectorIndexType": "hnsw", 
                            
                            # Vector index specific settings for HSNW
                            "vectorIndexConfig": {                   
                                
                                    "ef": 64,  # higher is better quality vs slower search
                                    "efConstruction": 128, # higher = better index but slower build
                                    "maxConnections": 32,  # max conn per layer - higher = more memory
                            },
                            
                            "vectorizer": "none",
                            
                            "properties": self.finrag_properties }
                            ]
        }

        self.model_path = model_path
        try:
            self.api_key = os.environ['FINRAG_WEAVIATE_API_KEY']  
            self.url =  os.environ['FINRAG_WEAVIATE_ENDPOINT']
            self.client = WeaviateWCS(endpoint=self.url, 
                                    api_key=self.api_key, 
                                    model_name_or_path=self.model_path)
        except Exception as e:
            # raise Exception(f"Could not create Weaviate client: {e}")
            pass
        
        assert self.client._client.is_live(), "Weaviate is not live"
        assert self.client._client.is_ready(), "Weaviate is not ready"
        # careful with accessing '_client' since the weaviate helper usually closes the connection every time
        
        self.indexer = None
        
        self.create_collection()
    
    @property
    def collections(self):
        
        return self.client.show_all_collections()
        
    def create_collection(self, collection_name: str='Finrag', description: str='Financial reports'):

        self.collection_name = collection_name
        if collection_name not in self.collections:
            self.client.create_collection(collection_name=collection_name, 
                                          properties=self.finrag_properties, 
                                          description=description)
            self.collection_name = collection_name
        else:
            logging.warning(f"Collection {collection_name} already exists")


    def empty_collection(self, collection_name: str='Finrag') -> bool:
        
        # not in the library yet, so I simply delete and recreate it
        if collection_name in self.collections:
            self.client.delete_collection(collection_name=collection_name)
            self.create_collection()
            return True
        else:
            logging.warning(f"Collection {collection_name} doesn't exist")
            return False


    def index_data(self, data: List[dict]= None, collection_name: str='Finrag'):
        
        if self.indexer is None:
            self.indexer = WeaviateIndexer(self.client)
        
        if data is None:
            # use the parquet file, otherwise use the data passed
            data = pd.read_parquet(parquet_file).to_dict('records')
            # the parquet file was created/incremented when a new article was uploaded
            # it is a dataframe with columns: file, content, content_embedding
            # and reflects exactly the data that we want to index at all times
        self.status = self.indexer.batch_index_data(data, collection_name, 256)
        
        self.num_errors, self.error_messages, self.doc_ids = self.status
        
        # in this case with few articles, we don't tolerate errors
        # batch_index_data already tests errors against a threshold
        # assert self.num_errors == 0, f"Errors: {self.num_errors}"
        
        
    def keyword_search(self, 
                       query: str, 
                       limit: int=5, 
                       return_properties: List[str]=['filename', 'content'],
                       alpha=None  # dummy parameter to match the hybrid_search signature
                       ) -> List[str]:
        response = self.client.keyword_search(
                                request=query,
                                collection_name=self.collection_name,
                                query_properties=['content'], 
                                limit=limit,
                                filter=None,  
                                return_properties=return_properties,
                                return_raw=False)
        
        return [res['content'] for res in response]
    
    
    def vector_search(self, 
                      query: str, 
                      limit: int=5, 
                      return_properties: List[str]=['filename', 'content'],
                      alpha=None  # dummy parameter to match the hybrid_search signature
                      ) -> List[str]:
        
        response = self.client.vector_search(
                                request=query,
                                collection_name=self.collection_name,
                                limit=limit,
                                filter=None,  
                                return_properties=return_properties,
                                return_raw=False)
        
        return [res['content'] for res in response]
    
    
    def hybrid_search(self, 
                      query: str, 
                      limit: int=5, 
                      alpha=0.5,  # higher = more vector search
                      return_properties: List[str]=['filename', 'content']
                      ) -> List[str]:

        response = self.client.hybrid_search(
                                request=query,
                                collection_name=self.collection_name,
                                query_properties=['content'],
                                alpha=alpha,  
                                limit=limit,
                                filter=None,  
                                return_properties=return_properties,
                                return_raw=False)
        
        return [res['content'] for res in response]