Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel | |
import cv2 | |
with open("test.html") as f: | |
lines = f.readlines() | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
#def addp5sketch(url): | |
# iframe = f'<iframe src ={url} style="border:none;height:525px;width:100%"/frame>' | |
# return gr.HTML(iframe) | |
def wandb_report(url): | |
iframe = f'<iframe src ={url} style="border:none;height:1024px;width:100%"/frame>' | |
return gr.HTML(iframe) | |
report_url = 'https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5' | |
control_img = 'myimage.jpg' | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"JFoz/dog-cat-pose", dtype=jnp.bfloat16 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 | |
) | |
def infer(prompts, negative_prompts, image): | |
params["controlnet"] = controlnet_params | |
num_samples = 1 #jax.device_count() | |
rng = create_key(0) | |
rng = jax.random.split(rng, jax.device_count()) | |
image = Image.fromarray(image) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
p_params = replicate(params) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=rng, | |
num_inference_steps=50, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
return output_images | |
with gr.Blocks(theme='kfahn/AnimalPose') as demo: | |
gr.Markdown( | |
""" | |
# Animal Pose Control Net | |
## This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. | |
[Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset) | |
[Diffusers model](https://huggingface.co/JFoz/dog-pose) | |
[Github](https://github.com/fi4cr/animalpose) | |
[Training Report](https://wandb.ai/john-fozard/AP10K-pose/runs/wn89ezaw) | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
prompts = gr.Textbox(label="Prompt") | |
negative_prompts = gr.Textbox(label="Negative Prompt") | |
conditioning_image = gr.Image(label="Conditioning Image") | |
with gr.Column(): | |
#keypoint_tool = addp5sketch(sketch_url) | |
keypoint_tool = gr.HTML(lines) | |
submit_btn = gr.Button("Submit") | |
submit_btn.click(fn=infer, inputs = ["text", "text", "image"], outputs = "gallery", examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]]) | |
#gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = "gallery", | |
#examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]]) | |
#with gr.Row(): | |
# report = wandb_report(report_url) | |
demo.launch() |