|
import evaluate |
|
import datasets |
|
from datasets.features import Sequence, Value, ClassLabel |
|
from sklearn.metrics import roc_auc_score |
|
import numpy as np |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Suite of threshold-agnostic metrics that provide a nuanced view |
|
of this unintended bias, by considering the various ways that a |
|
classifier’s score distribution can vary across designated groups. |
|
|
|
The following are computed: |
|
|
|
- BNSP (Background Negative, Subgroup Positive); and |
|
- BPSN (Background Positive, Subgroup Negative) AUC metrics |
|
|
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{borkan2019nuanced, |
|
title={Nuanced metrics for measuring unintended bias with real data for text classification}, |
|
author={Borkan, Daniel and Dixon, Lucas and Sorensen, Jeffrey and Thain, Nithum and Vasserman, Lucy}, |
|
booktitle={Companion proceedings of the 2019 world wide web conference}, |
|
pages={491--500}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """\ |
|
target list[list[str]]: list containing list of group targeted for each item |
|
label list[int]: list containing label index for each item |
|
output list[list[float]]: list of model output values for each |
|
""" |
|
|
|
class BiasAUC(evaluate.EvaluationModule): |
|
def _info(self): |
|
return datasets.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'target': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), |
|
'label': Value(dtype='int64', id=None), |
|
'output': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), |
|
} |
|
), |
|
reference_urls=["https://arxiv.org/abs/1903.04561"], |
|
) |
|
|
|
def _genreate_subgroup(self, targets, labels, outputs, subgroup, target_class=None): |
|
"""Returns label and output score from `targets` and `labels` |
|
if `subgroup` is in list of targeted groups found in `targets` |
|
""" |
|
target_class = target_class if target_class is not None else np.asarray(outputs).shape[-1] - 1 |
|
for target, label, result in zip(targets, labels, outputs): |
|
if subgroup in target: |
|
yield label, result[target_class] |
|
|
|
def _genreate_bpsn(self, targets, labels, outputs, subgroup, target_class=None): |
|
"""Returns label and output score from `targets` and `labels` |
|
if (1) `subgroup` is in list of targeted groups found in `targets` and |
|
label is not the same as `target_class`; or (2) `subgroup` is not in list of |
|
targeted groups found in `targets` and label is the same as `target_class` |
|
""" |
|
target_class = target_class if target_class is not None else np.asarray(outputs).shape[-1] - 1 |
|
for target, label, result in zip(targets, labels, outputs): |
|
if not target: |
|
continue |
|
|
|
if subgroup not in target and label == target_class: |
|
yield label, result[target_class] |
|
|
|
elif subgroup in target and label != target_class: |
|
yield label, result[target_class] |
|
|
|
def _genreate_bnsp(self, targets, labels, outputs, subgroup, target_class=None): |
|
"""Returns label and output score from `targets` and `labels` |
|
if (1) `subgroup` is not in list of targeted groups found in `targets` and |
|
label is the same as `target_class`; or (2) `subgroup` is in list of |
|
targeted groups found in `targets` and label is not the same as `target_class` |
|
""" |
|
|
|
target_class = target_class if target_class is not None else np.asarray(outputs).shape[-1] - 1 |
|
for target, label, result in zip(targets, labels, outputs): |
|
if not target: |
|
continue |
|
|
|
if subgroup not in target and label != target_class: |
|
yield label, result[target_class] |
|
|
|
elif subgroup in target and label == target_class: |
|
yield label, result[target_class] |
|
|
|
def _auc_by_group(self, target, label, output, subgroup): |
|
""" Compute bias AUC metrics |
|
""" |
|
|
|
y_trues, y_preds = zip(*self._genreate_subgroup(target, label, output, subgroup)) |
|
subgroup_auc_score = roc_auc_score(y_trues, y_preds) |
|
|
|
y_trues, y_preds = zip(*self._genreate_bpsn(target, label, output, subgroup)) |
|
bpsn_auc_score = roc_auc_score(y_trues, y_preds) |
|
|
|
y_trues, y_preds = zip(*self._genreate_bnsp(target, label, output, subgroup)) |
|
bnsp_auc_score = roc_auc_score(y_trues, y_preds) |
|
|
|
|
|
return {'Subgroup' : subgroup_auc_score, |
|
'BPSN' : bpsn_auc_score, |
|
'BNSP' : bnsp_auc_score} |
|
|
|
def _update_overall(self, result, labels, outputs, power_value=-5): |
|
"""Compute the generalized mean of Bias AUCs""" |
|
result['Overall'] = {} |
|
for metric in ['Subgroup', 'BPSN', 'BNSP']: |
|
metric_values = np.array([result[community][metric] for community in result |
|
if community != 'Overall']) |
|
metric_values **= power_value |
|
mean_value = np.power(np.sum(metric_values)/(len(result) - 1), 1/power_value) |
|
result['Overall'][f"{metric} generalized mean"] = mean_value |
|
y_preds = [output[1] for output in outputs] |
|
result['Overall']["Overall AUC"] = roc_auc_score(labels, y_preds) |
|
return result |
|
|
|
|
|
def _compute(self, target, label, output, subgroups=None): |
|
if subgroups is None: |
|
subgroups = set(group for group_list in target for group in group_list) |
|
result = {subgroup : self._auc_by_group(target, label, output, subgroup) |
|
for subgroup in subgroups} |
|
result = self._update_overall(result, label, output) |
|
return result |
|
|
|
|