Spaces:
Runtime error
Runtime error
import subprocess | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
# from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
# from src.submission.submit import add_new_eval | |
# from PIL import Image | |
# from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf | |
# import copy | |
def load_data(data_path): | |
columns = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] | |
columns_sorted = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] | |
df = pd.read_csv(data_path).dropna() | |
# df['Post-ASR'] = df['Post-ASR'].round(0) | |
# rank according to the Score column | |
df = df.sort_values(by='Post-ASR', ascending=False) | |
# reorder the columns | |
df = df[columns_sorted] | |
return df | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
# try: | |
# print(EVAL_REQUESTS_PATH) | |
# snapshot_download( | |
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
# ) | |
# except Exception: | |
# restart_space() | |
# try: | |
# print(EVAL_RESULTS_PATH) | |
# snapshot_download( | |
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
# ) | |
# except Exception: | |
# restart_space() | |
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
# leaderboard_df = original_df.copy() | |
# ( | |
# finished_eval_queue_df, | |
# running_eval_queue_df, | |
# pending_eval_queue_df, | |
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
all_columns = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] | |
show_columns = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] | |
TYPES = ['str', 'number', 'number', 'number', 'number'] | |
files = ['nudity','vangogh', 'church','garbage','parachute','tench'] | |
csv_path='./assets/'+files[0]+'.csv' | |
df_results = load_data(csv_path) | |
methods = list(set(df_results['Unlearned_Methods'])) | |
df_results_init = df_results.copy()[show_columns] | |
def update_table( | |
hidden_df: pd.DataFrame, | |
model1_column: list, | |
#type_query: list, | |
#open_query: list, | |
# precision_query: str, | |
# size_query: list, | |
# show_deleted: bool, | |
query: str, | |
): | |
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
# filtered_df = filter_queries(query, filtered_df) | |
# df = select_columns(filtered_df, columns) | |
filtered_df = hidden_df.copy() | |
# print(open_query) | |
# filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)] | |
# map_open = {'open': 'Yes', 'closed': 'No'} | |
# filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])] | |
filtered_df=select_columns(filtered_df,model1_column) | |
filtered_df = filter_queries(query, filtered_df) | |
# map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'} | |
# filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])] | |
# filtered_df = filtered_df[[map_columns[k] for k in columns]] | |
# deduplication | |
# df = df.drop_duplicates(subset=["Model"]) | |
df = filtered_df.drop_duplicates() | |
# df = df[show_columns] | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df['Unlearned_Methods'].str.contains(query, case=False))] | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
return filtered_df | |
def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df['Diffusion_Models'].str.contains(query, case=False))] | |
def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
# if query != "": | |
# queries = [q.strip() for q in query.split(";")] | |
for _q in query: | |
print(_q) | |
if _q != "": | |
temp_filtered_df = search_table_model(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
return filtered_df | |
def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame: | |
always_here_cols = ['Unlearned_Methods'] | |
# We use COLS to maintain sorting | |
all_columns =['Pre-ASR','Post-ASR','FID','CLIP-Score'] | |
if (len(columns_1)) == 0: | |
filtered_df = df[ | |
always_here_cols + | |
[c for c in all_columns if c in df.columns] | |
] | |
else: | |
filtered_df = df[ | |
always_here_cols + | |
[c for c in all_columns if c in df.columns and (c in columns_1) ] | |
] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text") | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="reference-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
model1_column = gr.CheckboxGroup( | |
label="Evaluation Metrics", | |
choices=['Pre-ASR','Post-ASR','FID','CLIP-Score'], | |
interactive=True, | |
elem_id="column-select", | |
) | |
# with gr.Column(min_width=320): | |
# with gr.Row(): | |
# shown_columns_1 = gr.CheckboxGroup( | |
# choices=["Church","Parachute","Tench", "Garbage Truck"], | |
# label="Undersirable Objects", | |
# elem_id="column-object", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# shown_columns_2 = gr.CheckboxGroup( | |
# choices=["Van Gogh"], | |
# label="Undersirable Styles", | |
# elem_id="column-style", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# shown_columns_3 = gr.CheckboxGroup( | |
# choices=["Violence","Illegal Activity","Nudity"], | |
# label="Undersirable Concepts (Outputs that may be offensive in nature)", | |
# elem_id="column-select", | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# shown_columns_4 = gr.Slider( | |
# 1, 100, value=40, | |
# step=1, label="Attacking Steps", info="Choose between 1 and 100", | |
# interactive=True,) | |
for i in range(len(files)): | |
if files[i] == "church": | |
name = "### [Unlearned Objects] "+" Church" | |
csv_path = './assets/'+files[i]+'.csv' | |
elif files[i] == 'garbage': | |
name = "### [Unlearned Objects] "+" Garbage" | |
csv_path = './assets/'+files[i]+'.csv' | |
elif files[i] == 'tench': | |
name = "### [Unlearned Objects] "+" Tench" | |
csv_path = './assets/'+files[i]+'.csv' | |
elif files[i] == 'parachute': | |
name = "### [Unlearned Objects] "+" Parachute" | |
csv_path = './assets/'+files[i]+'.csv' | |
elif files[i] == 'vangogh': | |
name = "### [Unlearned Style] "+" Van Gogh" | |
csv_path = './assets/'+files[i]+'.csv' | |
elif files[i] == 'nudity': | |
name = "### Unlearned Concepts "+" Nudity" | |
csv_path = './assets/'+files[i]+'.csv' | |
# elif files[i] == 'violence': | |
# name = "### Unlearned Concepts "+" Violence" | |
# csv_path = './assets/'+files[i]+'.csv' | |
# elif files[i] == 'illegal_activity': | |
# name = "### Unlearned Concepts "+" Illgal Activity" | |
# csv_path = './assets/'+files[i]+'.csv' | |
gr.Markdown(name) | |
df_results = load_data(csv_path) | |
df_results_init = df_results.copy()[show_columns] | |
leaderboard_table = gr.components.Dataframe( | |
value = df_results, | |
datatype = TYPES, | |
elem_id = "leaderboard-table", | |
interactive = False, | |
visible=True, | |
) | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
#value=df_results_init, | |
value=df_results, | |
interactive=False, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
model1_column, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
for selector in [model1_column]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
model1_column, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=True): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=10, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue().launch(share=True) |