Update app.py
Browse files
app.py
CHANGED
@@ -26,16 +26,6 @@ from llama_cpp import Llama
|
|
26 |
|
27 |
|
28 |
SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
29 |
-
SYSTEM_TOKEN = 1788
|
30 |
-
USER_TOKEN = 1404
|
31 |
-
BOT_TOKEN = 9225
|
32 |
-
LINEBREAK_TOKEN = 13
|
33 |
-
|
34 |
-
ROLE_TOKENS = {
|
35 |
-
"user": USER_TOKEN,
|
36 |
-
"bot": BOT_TOKEN,
|
37 |
-
"system": SYSTEM_TOKEN
|
38 |
-
}
|
39 |
|
40 |
LOADER_MAPPING = {
|
41 |
".csv": (CSVLoader, {}),
|
@@ -52,37 +42,42 @@ LOADER_MAPPING = {
|
|
52 |
".txt": (TextLoader, {"encoding": "utf8"}),
|
53 |
}
|
54 |
|
55 |
-
directory = "."
|
56 |
-
model_url = "https://huggingface.co/IlyaGusev/saiga2_13b_gguf/resolve/main/model-q4_K.gguf"
|
57 |
-
repo_name = "IlyaGusev/saiga2_13b_gguf"
|
58 |
-
model_name = "model-q4_K.gguf"
|
59 |
-
final_model_path = os.path.join(directory, model_name)
|
60 |
-
embedder_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
61 |
-
|
62 |
-
print("Downloading all files...")
|
63 |
-
rm_files = [os.path.join(directory, f) for f in os.listdir(directory)]
|
64 |
-
for f in rm_files:
|
65 |
-
if os.path.isfile(f):
|
66 |
-
os.remove(f)
|
67 |
-
else:
|
68 |
-
shutil.rmtree(f)
|
69 |
-
|
70 |
-
if not os.path.exists(final_model_path):
|
71 |
-
with open(final_model_path, "wb") as f:
|
72 |
-
http_get(model_url, f)
|
73 |
-
os.chmod(final_model_path, 0o777)
|
74 |
-
print("Files downloaded!")
|
75 |
-
|
76 |
-
model = Llama(
|
77 |
-
model_path=final_model_path,
|
78 |
-
n_ctx=2000,
|
79 |
-
n_parts=1,
|
80 |
-
)
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
max_new_tokens = 1500
|
85 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedder_name)
|
86 |
|
87 |
def get_uuid():
|
88 |
return str(uuid4())
|
@@ -97,11 +92,9 @@ def load_single_document(file_path: str) -> Document:
|
|
97 |
|
98 |
|
99 |
def get_message_tokens(model, role, content):
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
message_tokens.append(model.token_eos())
|
104 |
-
return message_tokens
|
105 |
|
106 |
|
107 |
def get_system_tokens(model):
|
@@ -136,7 +129,7 @@ def build_index(file_paths, db, chunk_size, chunk_overlap, file_warning):
|
|
136 |
|
137 |
db = Chroma.from_documents(
|
138 |
fixed_documents,
|
139 |
-
|
140 |
client_settings=Settings(
|
141 |
anonymized_telemetry=False
|
142 |
)
|
@@ -151,7 +144,7 @@ def user(message, history, system_prompt):
|
|
151 |
|
152 |
|
153 |
def retrieve(history, db, retrieved_docs, k_documents):
|
154 |
-
|
155 |
if db:
|
156 |
last_user_message = history[-1][0]
|
157 |
retriever = db.as_retriever(search_kwargs={"k": k_documents})
|
@@ -172,25 +165,25 @@ def bot(
|
|
172 |
if not history:
|
173 |
return
|
174 |
|
175 |
-
tokens = get_system_tokens(
|
176 |
tokens.append(LINEBREAK_TOKEN)
|
177 |
|
178 |
for user_message, bot_message in history[:-1]:
|
179 |
-
message_tokens = get_message_tokens(model=
|
180 |
tokens.extend(message_tokens)
|
181 |
if bot_message:
|
182 |
-
message_tokens = get_message_tokens(model=
|
183 |
tokens.extend(message_tokens)
|
184 |
|
185 |
last_user_message = history[-1][0]
|
186 |
if retrieved_docs:
|
187 |
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
|
188 |
-
message_tokens = get_message_tokens(model=
|
189 |
tokens.extend(message_tokens)
|
190 |
|
191 |
-
role_tokens = [
|
192 |
tokens.extend(role_tokens)
|
193 |
-
generator =
|
194 |
tokens,
|
195 |
top_k=top_k,
|
196 |
top_p=top_p,
|
@@ -199,9 +192,9 @@ def bot(
|
|
199 |
|
200 |
partial_text = ""
|
201 |
for i, token in enumerate(generator):
|
202 |
-
if token ==
|
203 |
break
|
204 |
-
partial_text +=
|
205 |
history[-1][1] = partial_text
|
206 |
yield history
|
207 |
|
|
|
26 |
|
27 |
|
28 |
SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
LOADER_MAPPING = {
|
31 |
".csv": (CSVLoader, {}),
|
|
|
42 |
".txt": (TextLoader, {"encoding": "utf8"}),
|
43 |
}
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
def load_model(
|
47 |
+
directory: str = ".",
|
48 |
+
model_name: str = "model-q4_K.gguf",
|
49 |
+
model_url: str = "https://huggingface.co/IlyaGusev/saiga2_13b_gguf/resolve/main/model-q4_K.gguf"
|
50 |
+
):
|
51 |
+
final_model_path = os.path.join(directory, model_name)
|
52 |
+
|
53 |
+
print("Downloading all files...")
|
54 |
+
rm_files = [os.path.join(directory, f) for f in os.listdir(directory)]
|
55 |
+
for f in rm_files:
|
56 |
+
if os.path.isfile(f):
|
57 |
+
os.remove(f)
|
58 |
+
else:
|
59 |
+
shutil.rmtree(f)
|
60 |
+
|
61 |
+
if not os.path.exists(final_model_path):
|
62 |
+
with open(final_model_path, "wb") as f:
|
63 |
+
http_get(model_url, f)
|
64 |
+
os.chmod(final_model_path, 0o777)
|
65 |
+
print("Files downloaded!")
|
66 |
+
|
67 |
+
model = Llama(
|
68 |
+
model_path=final_model_path,
|
69 |
+
n_ctx=2000,
|
70 |
+
n_parts=1,
|
71 |
+
)
|
72 |
+
|
73 |
+
print("Model loaded!")
|
74 |
+
return model
|
75 |
+
|
76 |
+
MAX_NEW_TOKENS = 1500
|
77 |
+
EMBEDDER_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
78 |
+
EMBEDDER = HuggingFaceEmbeddings(model_name=EMBEDDER_NAME)
|
79 |
+
MODEL = load_model()
|
80 |
|
|
|
|
|
81 |
|
82 |
def get_uuid():
|
83 |
return str(uuid4())
|
|
|
92 |
|
93 |
|
94 |
def get_message_tokens(model, role, content):
|
95 |
+
content = f"{role}\n{content}\n</s>"
|
96 |
+
content = content.encode("utf-8")
|
97 |
+
return model.tokenize(content, special=True)
|
|
|
|
|
98 |
|
99 |
|
100 |
def get_system_tokens(model):
|
|
|
129 |
|
130 |
db = Chroma.from_documents(
|
131 |
fixed_documents,
|
132 |
+
EMBEDDER,
|
133 |
client_settings=Settings(
|
134 |
anonymized_telemetry=False
|
135 |
)
|
|
|
144 |
|
145 |
|
146 |
def retrieve(history, db, retrieved_docs, k_documents):
|
147 |
+
retrieved_docs = ""
|
148 |
if db:
|
149 |
last_user_message = history[-1][0]
|
150 |
retriever = db.as_retriever(search_kwargs={"k": k_documents})
|
|
|
165 |
if not history:
|
166 |
return
|
167 |
|
168 |
+
tokens = get_system_tokens(MODEL)[:]
|
169 |
tokens.append(LINEBREAK_TOKEN)
|
170 |
|
171 |
for user_message, bot_message in history[:-1]:
|
172 |
+
message_tokens = get_message_tokens(model=MODEL, role="user", content=user_message)
|
173 |
tokens.extend(message_tokens)
|
174 |
if bot_message:
|
175 |
+
message_tokens = get_message_tokens(model=MODEL, role="bot", content=bot_message)
|
176 |
tokens.extend(message_tokens)
|
177 |
|
178 |
last_user_message = history[-1][0]
|
179 |
if retrieved_docs:
|
180 |
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
|
181 |
+
message_tokens = get_message_tokens(model=MODEL, role="user", content=last_user_message)
|
182 |
tokens.extend(message_tokens)
|
183 |
|
184 |
+
role_tokens = [MODEL.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
|
185 |
tokens.extend(role_tokens)
|
186 |
+
generator = MODEL.generate(
|
187 |
tokens,
|
188 |
top_k=top_k,
|
189 |
top_p=top_p,
|
|
|
192 |
|
193 |
partial_text = ""
|
194 |
for i, token in enumerate(generator):
|
195 |
+
if token == MODEL.token_eos() or (MAX_NEW_TOKENS is not None and i >= MAX_NEW_TOKENS):
|
196 |
break
|
197 |
+
partial_text += MODEL.detokenize([token]).decode("utf-8", "ignore")
|
198 |
history[-1][1] = partial_text
|
199 |
yield history
|
200 |
|