File size: 11,449 Bytes
8e5a242 258d8d2 8e5a242 a5238c2 a6787f7 8e5a242 a90f1e9 8e5a242 b0ed36b 8e5a242 b0ed36b 8e5a242 258d8d2 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 df6ace3 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 47ee788 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 a6787f7 8e5a242 60e0df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import gradio as gr
from uuid import uuid4
from huggingface_hub import snapshot_download
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PDFMinerLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
from chromadb.config import Settings
from llama_cpp import Llama
SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PDFMinerLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
}
repo_name = "IlyaGusev/saiga_13b_lora_llamacpp"
model_name = "ggml-model-q4_1.bin"
embedder_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
print("Downloading all files...")
snapshot_download(repo_id=repo_name, local_dir="/data/saiga_13b_lora_llamacpp", allow_patterns=model_name, cache_dir="/data")
snapshot_download(repo_id=embedder_name, local_dir="/data/paraphrase-multilingual-mpnet-base-v2", cache_dir="/data")
print("Files downloaded!")
model = Llama(
model_path=f"/data/saiga_13b_lora_llamacpp/{model_name}",
n_ctx=2000,
n_parts=1,
)
max_new_tokens = 1500
embeddings = HuggingFaceEmbeddings(model_name="/data/paraphrase-multilingual-mpnet-base-v2")
def get_uuid():
return str(uuid4())
def load_single_document(file_path: str) -> Document:
ext = "." + file_path.rsplit(".", 1)[-1]
assert ext in LOADER_MAPPING
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()[0]
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {"role": "system", "content": SYSTEM_PROMPT}
return get_message_tokens(model, **system_message)
def upload_files(files, file_paths):
file_paths = [f.name for f in files]
return file_paths
def process_text(text):
lines = text.split("\n")
lines = [line for line in lines if len(line.strip()) > 2]
text = "\n".join(lines).strip()
if len(text) < 10:
return None
return text
def build_index(file_paths, db, chunk_size, chunk_overlap, file_warning):
documents = [load_single_document(path) for path in file_paths]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)
fixed_documents = []
for doc in documents:
doc.page_content = process_text(doc.page_content)
if not doc.page_content:
continue
fixed_documents.append(doc)
db = Chroma.from_documents(
fixed_documents,
embeddings,
client_settings=Settings(
anonymized_telemetry=False
)
)
file_warning = f"Загружено {len(fixed_documents)} фрагментов! Можно задавать вопросы."
return db, file_warning
def user(message, history, system_prompt):
new_history = history + [[message, None]]
return "", new_history
def retrieve(history, db, retrieved_docs, k_documents):
context = ""
if db:
last_user_message = history[-1][0]
retriever = db.as_retriever(search_kwargs={"k": k_documents})
docs = retriever.get_relevant_documents(last_user_message)
retrieved_docs = "\n\n".join([doc.page_content for doc in docs])
return retrieved_docs
def bot(
history,
system_prompt,
conversation_id,
retrieved_docs,
top_p,
top_k,
temp
):
if not history:
return
tokens = get_system_tokens(model)[:]
tokens.append(LINEBREAK_TOKEN)
for user_message, bot_message in history[:-1]:
message_tokens = get_message_tokens(model=model, role="user", content=user_message)
tokens.extend(message_tokens)
if bot_message:
message_tokens = get_message_tokens(model=model, role="bot", content=bot_message)
tokens.extend(message_tokens)
last_user_message = history[-1][0]
if retrieved_docs:
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
message_tokens = get_message_tokens(model=model, role="user", content=last_user_message)
tokens.extend(message_tokens)
role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
tokens.extend(role_tokens)
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temp
)
partial_text = ""
for i, token in enumerate(generator):
if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
break
partial_text += model.detokenize([token]).decode("utf-8", "ignore")
history[-1][1] = partial_text
yield history
with gr.Blocks(
theme=gr.themes.Soft()
) as demo:
db = gr.State(None)
conversation_id = gr.State(get_uuid)
favicon = '<img src="https://cdn.midjourney.com/b88e5beb-6324-4820-8504-a1a37a9ba36d/0_1.png" width="48px" style="display: inline">'
gr.Markdown(
f"""<h1><center>{favicon}Saiga 13B llama.cpp: retrieval QA</center></h1>
"""
)
with gr.Row():
with gr.Column(scale=5):
file_output = gr.File(file_count="multiple", label="Загрузка файлов")
file_paths = gr.State([])
file_warning = gr.Markdown(f"Фрагменты ещё не загружены!")
with gr.Column(min_width=200, scale=3):
with gr.Tab(label="Параметры нарезки"):
chunk_size = gr.Slider(
minimum=50,
maximum=2000,
value=250,
step=50,
interactive=True,
label="Размер фрагментов",
)
chunk_overlap = gr.Slider(
minimum=0,
maximum=500,
value=30,
step=10,
interactive=True,
label="Пересечение"
)
with gr.Row():
k_documents = gr.Slider(
minimum=1,
maximum=10,
value=2,
step=1,
interactive=True,
label="Кол-во фрагментов для контекста"
)
with gr.Row():
retrieved_docs = gr.Textbox(
lines=6,
label="Извлеченные фрагменты",
placeholder="Появятся после задавания вопросов",
interactive=False
)
with gr.Row():
with gr.Column(scale=5):
system_prompt = gr.Textbox(label="Системный промпт", placeholder="", value=SYSTEM_PROMPT, interactive=False)
chatbot = gr.Chatbot(label="Диалог").style(height=400)
with gr.Column(min_width=80, scale=1):
with gr.Tab(label="Параметры генерации"):
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
interactive=True,
label="Top-p",
)
top_k = gr.Slider(
minimum=10,
maximum=100,
value=30,
step=5,
interactive=True,
label="Top-k",
)
temp = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.1,
step=0.1,
interactive=True,
label="Temp"
)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Отправить сообщение",
placeholder="Отправить сообщение",
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Отправить")
stop = gr.Button("Остановить")
clear = gr.Button("Очистить")
# Upload files
upload_event = file_output.change(
fn=upload_files,
inputs=[file_output, file_paths],
outputs=[file_paths],
queue=True,
).success(
fn=build_index,
inputs=[file_paths, db, chunk_size, chunk_overlap, file_warning],
outputs=[db, file_warning],
queue=True
)
# Pressing Enter
submit_event = msg.submit(
fn=user,
inputs=[msg, chatbot, system_prompt],
outputs=[msg, chatbot],
queue=False,
).success(
fn=retrieve,
inputs=[chatbot, db, retrieved_docs, k_documents],
outputs=[retrieved_docs],
queue=True,
).success(
fn=bot,
inputs=[
chatbot,
system_prompt,
conversation_id,
retrieved_docs,
top_p,
top_k,
temp
],
outputs=chatbot,
queue=True,
)
# Pressing the button
submit_click_event = submit.click(
fn=user,
inputs=[msg, chatbot, system_prompt],
outputs=[msg, chatbot],
queue=False,
).success(
fn=retrieve,
inputs=[chatbot, db, retrieved_docs, k_documents],
outputs=[retrieved_docs],
queue=True,
).success(
fn=bot,
inputs=[
chatbot,
system_prompt,
conversation_id,
retrieved_docs,
top_p,
top_k,
temp
],
outputs=chatbot,
queue=True,
)
# Stop generation
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
# Clear history
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue(max_size=128, concurrency_count=1)
demo.launch()
|