Spaces:
Runtime error
Runtime error
Ikala-allen
commited on
Commit
•
f6db68b
1
Parent(s):
d772cf1
Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ datasets:
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
-
description: "
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.19.1
|
11 |
app_file: app.py
|
@@ -13,7 +13,7 @@ pinned: false
|
|
13 |
---
|
14 |
|
15 |
# Metric Card for relation_extraction evalutation
|
16 |
-
This metric is for evaluating the quality of relation extraction output. By calculating the Micro and Macro F1 score of every relation extraction outputs to ensure the quality.
|
17 |
|
18 |
|
19 |
## Metric Description
|
@@ -24,31 +24,31 @@ This metric takes 2 inputs, prediction and references(ground truth). Both of the
|
|
24 |
```
|
25 |
import evaluate
|
26 |
|
27 |
-
|
28 |
-
metric_path = "Ikala-allen/relation_extraction"
|
29 |
-
module = evaluate.load(metric_path)
|
30 |
-
|
31 |
-
|
32 |
-
references
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
]
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
{"head": "
|
44 |
-
|
45 |
-
]
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
print(evaluation_scores)
|
51 |
-
|
52 |
```
|
53 |
|
54 |
|
@@ -58,18 +58,96 @@ print(evaluation_scores)
|
|
58 |
-
|
59 |
### Output Values
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
### Examples
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
## Limitations and Bias
|
72 |
-
|
73 |
|
74 |
## Citation
|
75 |
*Cite the source where this metric was introduced.*
|
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
+
description: "This metric is used for evaluating the F1 accuracy of input references and predictions."
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.19.1
|
11 |
app_file: app.py
|
|
|
13 |
---
|
14 |
|
15 |
# Metric Card for relation_extraction evalutation
|
16 |
+
This metric is used for evaluating the quality of relation extraction output. By calculating the Micro and Macro F1 score of every relation extraction outputs to ensure the quality.
|
17 |
|
18 |
|
19 |
## Metric Description
|
|
|
24 |
```
|
25 |
import evaluate
|
26 |
|
27 |
+
#### load metric
|
28 |
+
>>> metric_path = "Ikala-allen/relation_extraction"
|
29 |
+
>>> module = evaluate.load(metric_path)
|
30 |
+
|
31 |
+
#### Define your predictions and references
|
32 |
+
#### Example references (ground truth)
|
33 |
+
>>> references = [
|
34 |
+
... [
|
35 |
+
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
36 |
+
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
37 |
+
... ]
|
38 |
+
... ]
|
39 |
+
|
40 |
+
#### Example predictions
|
41 |
+
>>> predictions = [
|
42 |
+
... [
|
43 |
+
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
44 |
+
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
45 |
+
... ]
|
46 |
+
... ]
|
47 |
+
|
48 |
+
#### Calculate evaluation scores using the loaded metric
|
49 |
+
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
50 |
+
>>> print(evaluation_scores)
|
51 |
+
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
52 |
```
|
53 |
|
54 |
|
|
|
58 |
-
|
59 |
### Output Values
|
60 |
|
61 |
+
**output** (`dictionary` of `dictionary`s) with multiple key-value pairs
|
62 |
+
- **sell** (`dictionary`): score of type sell
|
63 |
+
- **tp** : true positive count
|
64 |
+
- **fp** : false positive count
|
65 |
+
- **fn** : false negative count
|
66 |
+
- **p** : precision
|
67 |
+
- **r** : recall
|
68 |
+
- **f1** : micro f1 score
|
69 |
+
- **ALL** (`dictionary`): score of all of the type (sell and belongs to)
|
70 |
+
- **tp** : true positive count
|
71 |
+
- **fp** : false positive count
|
72 |
+
- **fn** : false negative count
|
73 |
+
- **p** : precision
|
74 |
+
- **r** : recall
|
75 |
+
- **f1** : micro f1 score
|
76 |
+
- **Macro_f1** : macro f1 score
|
77 |
+
- **Macro_p** : macro precision
|
78 |
+
- **Macro_r** : macro recall
|
79 |
+
-
|
80 |
+
Output Example:
|
81 |
+
```python
|
82 |
+
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
83 |
+
```
|
84 |
+
Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
85 |
|
86 |
### Examples
|
87 |
+
Example of only one prediction and reference:
|
88 |
+
```python
|
89 |
+
>>> metric_path = "Ikala-allen/relation_extraction"
|
90 |
+
>>> module = evaluate.load(metric_path)
|
91 |
+
|
92 |
+
#### Define your predictions and references
|
93 |
+
#### Example references (ground truth)
|
94 |
+
>>> references = [
|
95 |
+
... [
|
96 |
+
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
97 |
+
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
98 |
+
... ]
|
99 |
+
... ]
|
100 |
+
|
101 |
+
#### Example predictions
|
102 |
+
>>> predictions = [
|
103 |
+
... [
|
104 |
+
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
105 |
+
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
106 |
+
... ]
|
107 |
+
... ]
|
108 |
+
|
109 |
+
#### Calculate evaluation scores using the loaded metric
|
110 |
+
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
111 |
+
>>> print(evaluation_scores)
|
112 |
+
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
113 |
+
```
|
114 |
+
|
115 |
+
Example with two or more prediction and reference:
|
116 |
+
```python
|
117 |
+
>>> metric_path = "Ikala-allen/relation_extraction"
|
118 |
+
>>> module = evaluate.load(metric_path)
|
119 |
+
|
120 |
+
#### Define your predictions and references
|
121 |
+
#### Example references (ground truth)
|
122 |
+
>>> references = [
|
123 |
+
... [
|
124 |
+
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
125 |
+
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
126 |
+
... ],[
|
127 |
+
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
|
128 |
+
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
129 |
+
... ]
|
130 |
+
... ]
|
131 |
+
|
132 |
+
#### Example predictions
|
133 |
+
>>> predictions = [
|
134 |
+
... [
|
135 |
+
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
136 |
+
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
137 |
+
... ],[
|
138 |
+
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
|
139 |
+
... {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
|
140 |
+
... ]
|
141 |
+
... ]
|
142 |
+
|
143 |
+
#### Calculate evaluation scores using the loaded metric
|
144 |
+
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
145 |
+
>>> print(evaluation_scores)
|
146 |
+
{'sell': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146}, 'ALL': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146, 'Macro_f1': 57.142857142857146, 'Macro_p': 50.0, 'Macro_r': 66.66666666666667}}
|
147 |
+
```
|
148 |
|
149 |
## Limitations and Bias
|
150 |
+
This metric has multiple known limitations:
|
151 |
|
152 |
## Citation
|
153 |
*Cite the source where this metric was introduced.*
|