Spaces:
Runtime error
Runtime error
Ikala-allen
commited on
Commit
•
54553f6
1
Parent(s):
cb05f51
Update README.md
Browse files
README.md
CHANGED
@@ -25,30 +25,30 @@ This metric can be used in relation extraction evaluation.
|
|
25 |
## How to Use
|
26 |
This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
|
27 |
```python
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
>>> print(evaluation_scores)
|
45 |
-
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
46 |
```
|
47 |
|
48 |
-
|
49 |
### Inputs
|
50 |
- **predictions** (`list` of `list` of `dictionary`): relation and its type of prediction
|
51 |
-
- **references** (`list` of `list` of `dictionary`): references for each relation and its type
|
|
|
|
|
|
|
52 |
|
53 |
### Output Values
|
54 |
|
@@ -73,7 +73,7 @@ This metric takes 2 inputs, prediction and references(ground truth). Both of the
|
|
73 |
|
74 |
Output Example:
|
75 |
```python
|
76 |
-
{'
|
77 |
```
|
78 |
|
79 |
Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
@@ -81,23 +81,23 @@ Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0
|
|
81 |
### Examples
|
82 |
Example of only one prediction and reference:
|
83 |
```python
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
101 |
```
|
102 |
|
103 |
Example with two or more prediction and reference:
|
|
|
25 |
## How to Use
|
26 |
This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
|
27 |
```python
|
28 |
+
import evaluate
|
29 |
+
metric_path = "Ikala-allen/relation_extraction"
|
30 |
+
module = evaluate.load(metric_path)
|
31 |
+
references = [
|
32 |
+
[
|
33 |
+
{"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
34 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
35 |
+
]
|
36 |
+
]
|
37 |
+
predictions = [
|
38 |
+
[
|
39 |
+
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
40 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
41 |
+
]
|
42 |
+
]
|
43 |
+
evaluation_scores = module.compute(predictions=predictions, references=references)
|
|
|
|
|
44 |
```
|
45 |
|
|
|
46 |
### Inputs
|
47 |
- **predictions** (`list` of `list` of `dictionary`): relation and its type of prediction
|
48 |
+
- **references** (`list` of `list` of `dictionary`): references for each relation and its type
|
49 |
+
- **mode** (`str`): define strict or boundaries mode
|
50 |
+
- **only_all** (`bool`): define whether only output ["ALL"] relation_type score or every relation_type score, default True
|
51 |
+
- **relation_types** (`list`): define relation type that need to be evaluate, if not given, it will construct relation_types from ground truth, default []
|
52 |
|
53 |
### Output Values
|
54 |
|
|
|
73 |
|
74 |
Output Example:
|
75 |
```python
|
76 |
+
{'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}
|
77 |
```
|
78 |
|
79 |
Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
|
|
|
81 |
### Examples
|
82 |
Example of only one prediction and reference:
|
83 |
```python
|
84 |
+
metric_path = "Ikala-allen/relation_extraction"
|
85 |
+
module = evaluate.load(metric_path)
|
86 |
+
references = [
|
87 |
+
[
|
88 |
+
{"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
89 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
90 |
+
]
|
91 |
+
]
|
92 |
+
predictions = [
|
93 |
+
[
|
94 |
+
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
95 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
96 |
+
]
|
97 |
+
]
|
98 |
+
evaluation_scores = module.compute(predictions=predictions, references=references)
|
99 |
+
print(evaluation_scores)
|
100 |
+
>>> {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
101 |
```
|
102 |
|
103 |
Example with two or more prediction and reference:
|