Ikala-allen commited on
Commit
5199800
1 Parent(s): 46c9e1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -3
README.md CHANGED
@@ -79,7 +79,7 @@ Output Example:
79
  Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
80
 
81
  ### Examples
82
- Example1 : only one prediction and reference, mode = strict, consider only output ALL relation score
83
  ```python
84
  metric_path = "Ikala-allen/relation_extraction"
85
  module = evaluate.load(metric_path)
@@ -106,7 +106,7 @@ print(evaluation_scores)
106
  >>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
107
  ```
108
 
109
- Example2 : only one prediction and reference, mode = boundaries, consider only output ALL relation score
110
  ```python
111
  metric_path = "Ikala-allen/relation_extraction"
112
  module = evaluate.load(metric_path)
@@ -133,7 +133,42 @@ print(evaluation_scores)
133
  >>> {'tp': 2, 'fp': 0, 'fn': 1, 'p': 100.0, 'r': 66.66666666666667, 'f1': 80.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}
134
  ```
135
 
136
- Example with two or more prediction and reference:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  ```python
138
  >>> metric_path = "Ikala-allen/relation_extraction"
139
  >>> module = evaluate.load(metric_path)
 
79
  Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
80
 
81
  ### Examples
82
+ Example1 : only one prediction and reference, mode = strict, only output ALL relation score
83
  ```python
84
  metric_path = "Ikala-allen/relation_extraction"
85
  module = evaluate.load(metric_path)
 
106
  >>> {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
107
  ```
108
 
109
+ Example2 : only one prediction and reference, mode = boundaries, only output ALL relation score
110
  ```python
111
  metric_path = "Ikala-allen/relation_extraction"
112
  module = evaluate.load(metric_path)
 
133
  >>> {'tp': 2, 'fp': 0, 'fn': 1, 'p': 100.0, 'r': 66.66666666666667, 'f1': 80.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}
134
  ```
135
 
136
+ Example3 : two or more prediction and reference, mode = boundaries, only output = False, output all relation type
137
+ ```python
138
+ metric_path = "Ikala-allen/relation_extraction"
139
+ module = evaluate.load(metric_path)
140
+ # Define your predictions and references
141
+ references = [
142
+ [
143
+ {"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
144
+ {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
145
+ ],
146
+ [
147
+ {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
148
+ {'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
149
+ ]
150
+ ]
151
+
152
+ # Example references (ground truth)
153
+ predictions = [
154
+ [
155
+ {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
156
+ {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
157
+ ],
158
+ [
159
+ {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
160
+ {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
161
+ ]
162
+ ]
163
+
164
+ # Calculate evaluation scores using the loaded metric
165
+ evaluation_scores = module.compute(predictions=predictions, references=references, mode = "boundaries", only_all = False, relation_types = [])
166
+
167
+ print(evaluation_scores)
168
+ >>> {'sell': {'tp': 3, 'fp': 1, 'fn': 0, 'p': 75.0, 'r': 100.0, 'f1': 85.71428571428571}, 'belongs_to': {'tp': 0, 'fp': 0, 'fn': 1, 'p': 0, 'r': 0, 'f1': 0}, 'ALL': {'tp': 3, 'fp': 1, 'fn': 1, 'p': 75.0, 'r': 75.0, 'f1': 75.0, 'Macro_f1': 42.857142857142854, 'Macro_p': 37.5, 'Macro_r': 50.0}}
169
+ ```
170
+
171
+ Example 4 with two or more prediction and reference:
172
  ```python
173
  >>> metric_path = "Ikala-allen/relation_extraction"
174
  >>> module = evaluate.load(metric_path)