Ikala-allen commited on
Commit
0d196a8
1 Parent(s): 24a5443

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -21,7 +21,7 @@ This metric can be used in relation extraction evaluation.
21
 
22
  ## How to Use
23
  This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
24
- ```
25
  >>> import evaluate
26
  >>> metric_path = "Ikala-allen/relation_extraction"
27
  >>> module = evaluate.load(metric_path)
@@ -74,7 +74,8 @@ Output Example:
74
  ```python
75
  {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
76
  ```
77
- Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
 
78
 
79
  ### Examples
80
  Example of only one prediction and reference:
 
21
 
22
  ## How to Use
23
  This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
24
+ ```python
25
  >>> import evaluate
26
  >>> metric_path = "Ikala-allen/relation_extraction"
27
  >>> module = evaluate.load(metric_path)
 
74
  ```python
75
  {'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
76
  ```
77
+
78
+ Remind : Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
79
 
80
  ### Examples
81
  Example of only one prediction and reference: