File size: 8,397 Bytes
a84678a
 
 
 
88b0888
a84678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b0888
a84678a
 
88b0888
a84678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import evaluate
import datasets
import numpy as np

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.
    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


def convert_format(data:list):
    """
    Args:
        data (list) : list of dictionaries with different entity elements
    e.g
        [
        {'head': ['phipigments', 'tinadaviespigments'...], 
        'head_type': ['product', 'brand'...], 
        'type': ['sell', 'sell'...], 
        'tail': ['國際認證之色乳', '國際認證之色乳'...], 
        'tail_type': ['product', 'product'...]}, 

        {'head': ['SABONTAIWAN', 'SNTAIWAN'...], 
        'head_type': ['brand', 'brand'...], 
        'type': ['sell', 'sell'...], 
        'tail': ['大馬士革玫瑰有機光燦系列', '大馬士革玫瑰有機光燦系列'...], 
        'tail_type': ['product', 'product'...]}
        ...
        ]
    """
    predictions = []
    for item in data:
        prediction_group = []
        for i in range(len(item['head'])):
            prediction = {
                'head': item['head'][i],
                'head_type': item['head_type'][i],
                'type': item['type'][i],
                'tail': item['tail'][i],
                'tail_type': item['tail_type'][i],
            }
            prediction_group.append(prediction)
        predictions.append(prediction_group)
    return predictions

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class relation_extraction(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Sequence({
                    "head": datasets.Value("string"),
                    "head_type": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "tail": datasets.Value("string"),
                    "tail_type": datasets.Value("string"),
                }),
                'references': datasets.Sequence({
                    "head": datasets.Value("string"),
                    "head_type": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "tail": datasets.Value("string"),
                    "tail_type": datasets.Value("string"),
                }),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, predictions, references, mode="strict", relation_types=[]):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        
        predictions = convert_format(predictions)
        references = convert_format(references)
        
        assert mode in ["strict", "boundaries"]

        # construct relation_types from ground truth if not given
        if len(relation_types) == 0:
            for triplets in references:
                for triplet in triplets:
                    relation = triplet["type"]
                    if relation not in relation_types:
                        relation_types.append(relation)
        
        scores = {rel: {"tp": 0, "fp": 0, "fn": 0} for rel in relation_types + ["ALL"]}
        
        # Count GT relations and Predicted relations
        n_sents = len(references)
        n_rels = sum([len([rel for rel in sent]) for sent in references])
        n_found = sum([len([rel for rel in sent]) for sent in predictions])

        # Count TP, FP and FN per type
        for pred_sent, gt_sent in zip(predictions, references):
            for rel_type in relation_types:
                # strict mode takes argument types into account
                if mode == "strict":
                    pred_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in pred_sent if
                                rel["type"] == rel_type}
                    gt_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in gt_sent if
                            rel["type"] == rel_type}

                # boundaries mode only takes argument spans into account
                elif mode == "boundaries":
                    pred_rels = {(rel["head"], rel["tail"]) for rel in pred_sent if rel["type"] == rel_type}
                    gt_rels = {(rel["head"], rel["tail"]) for rel in gt_sent if rel["type"] == rel_type}

                scores[rel_type]["tp"] += len(pred_rels & gt_rels)
                scores[rel_type]["fp"] += len(pred_rels - gt_rels)
                scores[rel_type]["fn"] += len(gt_rels - pred_rels)

        # Compute per entity Precision / Recall / F1
        for rel_type in scores.keys():
            if scores[rel_type]["tp"]:
                scores[rel_type]["p"] = 100 * scores[rel_type]["tp"] / (scores[rel_type]["fp"] + scores[rel_type]["tp"])
                scores[rel_type]["r"] = 100 * scores[rel_type]["tp"] / (scores[rel_type]["fn"] + scores[rel_type]["tp"])
            else:
                scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0

            if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0:
                scores[rel_type]["f1"] = 2 * scores[rel_type]["p"] * scores[rel_type]["r"] / (
                        scores[rel_type]["p"] + scores[rel_type]["r"])
            else:
                scores[rel_type]["f1"] = 0

        # Compute micro F1 Scores
        tp = sum([scores[rel_type]["tp"] for rel_type in relation_types])
        fp = sum([scores[rel_type]["fp"] for rel_type in relation_types])
        fn = sum([scores[rel_type]["fn"] for rel_type in relation_types])
        

        if tp:
            precision = 100 * tp / (tp + fp)
            recall = 100 * tp / (tp + fn)
            f1 = 2 * precision * recall / (precision + recall)

        else:
            precision, recall, f1 = 0, 0, 0

        scores["ALL"]["p"] = precision
        scores["ALL"]["r"] = recall
        scores["ALL"]["f1"] = f1
        scores["ALL"]["tp"] = tp
        scores["ALL"]["fp"] = fp
        scores["ALL"]["fn"] = fn


        # Compute Macro F1 Scores
        scores["ALL"]["Macro_f1"] = np.mean([scores[ent_type]["f1"] for ent_type in relation_types])
        scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
        scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])

        return scores