|
import argparse, os, sys, datetime, glob, importlib |
|
from omegaconf import OmegaConf |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
import torchvision |
|
from torch.utils.data import DataLoader, Dataset |
|
from dataloader import CellLoader |
|
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor |
|
import pytorch_lightning as pl |
|
from pytorch_lightning import seed_everything |
|
from pytorch_lightning.trainer import Trainer |
|
from pytorch_lightning.callbacks import Callback |
|
from pytorch_lightning.utilities import rank_zero_only |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def get_parser(**parser_kwargs): |
|
def str2bool(v): |
|
if isinstance(v, bool): |
|
return v |
|
if v.lower() in ("yes", "true", "t", "y", "1"): |
|
return True |
|
elif v.lower() in ("no", "false", "f", "n", "0"): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError("Boolean value expected.") |
|
|
|
parser = argparse.ArgumentParser(**parser_kwargs) |
|
parser.add_argument( |
|
"-n", |
|
"--name", |
|
type=str, |
|
const=True, |
|
default="", |
|
nargs="?", |
|
help="postfix for logdir", |
|
) |
|
parser.add_argument( |
|
"-r", |
|
"--resume", |
|
type=str, |
|
const=True, |
|
default="", |
|
nargs="?", |
|
help="resume from logdir or checkpoint in logdir", |
|
) |
|
parser.add_argument( |
|
"-b", |
|
"--base", |
|
nargs="*", |
|
metavar="base_config.yaml", |
|
help="paths to base configs. Loaded from left-to-right. " |
|
"Parameters can be overwritten or added with command-line options of the form `--key value`.", |
|
default=list(), |
|
) |
|
parser.add_argument( |
|
"-t", |
|
"--train", |
|
type=str2bool, |
|
const=True, |
|
default=False, |
|
nargs="?", |
|
help="train", |
|
) |
|
parser.add_argument( |
|
"--no-test", |
|
type=str2bool, |
|
const=True, |
|
default=False, |
|
nargs="?", |
|
help="disable test", |
|
) |
|
parser.add_argument( |
|
"-p", "--project", help="name of new or path to existing project" |
|
) |
|
parser.add_argument( |
|
"-d", |
|
"--debug", |
|
type=str2bool, |
|
nargs="?", |
|
const=True, |
|
default=False, |
|
help="enable post-mortem debugging", |
|
) |
|
parser.add_argument( |
|
"-s", |
|
"--seed", |
|
type=int, |
|
default=42, |
|
help="seed for seed_everything", |
|
) |
|
parser.add_argument( |
|
"-f", |
|
"--postfix", |
|
type=str, |
|
default="", |
|
help="post-postfix for default name", |
|
) |
|
|
|
return parser |
|
|
|
|
|
def nondefault_trainer_args(opt): |
|
parser = argparse.ArgumentParser() |
|
parser = Trainer.add_argparse_args(parser) |
|
args = parser.parse_args([]) |
|
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k)) |
|
|
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
class WrappedDataset(Dataset): |
|
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset""" |
|
|
|
def __init__(self, dataset): |
|
self.data = dataset |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
return self.data[idx] |
|
|
|
|
|
class DataModuleFromConfig(pl.LightningDataModule): |
|
def __init__( |
|
self, |
|
data_csv, |
|
dataset, |
|
crop_size=256, |
|
resize=600, |
|
batch_size=1, |
|
sequence_mode="latent", |
|
vocab="bert", |
|
text_seq_len=0, |
|
num_workers=1, |
|
threshold=False, |
|
train=True, |
|
validation=True, |
|
test=None, |
|
wrap=False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.data_csv = data_csv |
|
self.dataset = dataset |
|
self.image_folders = [] |
|
self.crop_size = crop_size |
|
self.resize = resize |
|
self.batch_size = batch_size |
|
self.sequence_mode = sequence_mode |
|
self.threshold = threshold |
|
self.text_seq_len = int(text_seq_len) |
|
self.vocab = vocab |
|
self.dataset_configs = dict() |
|
self.num_workers = num_workers if num_workers is not None else batch_size * 2 |
|
if train is not None: |
|
self.dataset_configs["train"] = train |
|
self.train_dataloader = self._train_dataloader |
|
if validation is not None: |
|
self.dataset_configs["validation"] = validation |
|
self.val_dataloader = self._val_dataloader |
|
if test is not None: |
|
self.dataset_configs["test"] = test |
|
self.test_dataloader = self._test_dataloader |
|
self.wrap = wrap |
|
|
|
def prepare_data(self): |
|
pass |
|
|
|
def setup(self, stage=None): |
|
|
|
self.cell_dataset_train = CellLoader( |
|
data_csv=self.data_csv, |
|
dataset=self.dataset, |
|
crop_size=self.crop_size, |
|
split_key="train", |
|
crop_method="random", |
|
sequence_mode=None, |
|
vocab=self.vocab, |
|
text_seq_len=self.text_seq_len, |
|
threshold=self.threshold, |
|
) |
|
|
|
self.cell_dataset_val = CellLoader( |
|
data_csv=self.data_csv, |
|
dataset=self.dataset, |
|
crop_size=self.crop_size, |
|
split_key="val", |
|
crop_method="center", |
|
sequence_mode=None, |
|
vocab=self.vocab, |
|
text_seq_len=self.text_seq_len, |
|
threshold=self.threshold, |
|
) |
|
|
|
def _train_dataloader(self): |
|
return DataLoader( |
|
self.cell_dataset_train, |
|
num_workers=self.num_workers, |
|
pin_memory=True, |
|
shuffle=True, |
|
batch_size=self.batch_size, |
|
) |
|
|
|
def _val_dataloader(self): |
|
return DataLoader( |
|
self.cell_dataset_val, |
|
num_workers=self.num_workers, |
|
pin_memory=True, |
|
batch_size=self.batch_size, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class SetupCallback(Callback): |
|
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config): |
|
super().__init__() |
|
self.resume = resume |
|
self.now = now |
|
self.logdir = logdir |
|
self.ckptdir = ckptdir |
|
self.cfgdir = cfgdir |
|
self.config = config |
|
self.lightning_config = lightning_config |
|
|
|
def on_fit_start(self, trainer, pl_module): |
|
if trainer.global_rank == 0: |
|
|
|
os.makedirs(self.logdir, exist_ok=True) |
|
os.makedirs(self.ckptdir, exist_ok=True) |
|
os.makedirs(self.cfgdir, exist_ok=True) |
|
|
|
print("Project config") |
|
print(OmegaConf.to_yaml(self.config)) |
|
OmegaConf.save( |
|
self.config, |
|
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)), |
|
) |
|
|
|
print("Lightning config") |
|
print(OmegaConf.to_yaml(self.lightning_config)) |
|
OmegaConf.save( |
|
OmegaConf.create({"lightning": self.lightning_config}), |
|
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)), |
|
) |
|
|
|
else: |
|
|
|
if not self.resume and os.path.exists(self.logdir): |
|
dst, name = os.path.split(self.logdir) |
|
dst = os.path.join(dst, "child_runs", name) |
|
os.makedirs(os.path.split(dst)[0], exist_ok=True) |
|
try: |
|
os.rename(self.logdir, dst) |
|
except FileNotFoundError: |
|
pass |
|
|
|
|
|
class ImageLogger(Callback): |
|
def __init__( |
|
self, batch_frequency, max_images, clamp=True, increase_log_steps=True |
|
): |
|
super().__init__() |
|
self.batch_freq = batch_frequency |
|
self.max_images = max_images |
|
self.logger_log_images = { |
|
pl.loggers.WandbLogger: self._wandb, |
|
|
|
pl.loggers.TensorBoardLogger: self._testtube, |
|
} |
|
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)] |
|
if not increase_log_steps: |
|
self.log_steps = [self.batch_freq] |
|
self.clamp = clamp |
|
|
|
@rank_zero_only |
|
def _wandb(self, pl_module, images, batch_idx, split): |
|
raise ValueError("No way wandb") |
|
grids = dict() |
|
for k in images: |
|
grid = torchvision.utils.make_grid(images[k]) |
|
grids[f"{split}/{k}"] = wandb.Image(grid) |
|
pl_module.logger.experiment.log(grids) |
|
|
|
@rank_zero_only |
|
def _testtube(self, pl_module, images, batch_idx, split): |
|
for k in images: |
|
images[k] -= torch.min(images[k]) |
|
images[k] /= torch.max(images[k]) |
|
grid = torchvision.utils.make_grid(images[k]) |
|
|
|
|
|
tag = f"{split}/{k}" |
|
pl_module.logger.experiment.add_image( |
|
tag, grid, global_step=pl_module.global_step |
|
) |
|
|
|
@rank_zero_only |
|
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): |
|
root = os.path.join(save_dir, "images", split) |
|
for k in images: |
|
images[k] -= torch.min(images[k]) |
|
images[k] /= torch.max(images[k]) |
|
grid = torchvision.utils.make_grid(images[k], nrow=4) |
|
|
|
|
|
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
grid = grid.numpy() |
|
grid = (grid * 255).astype(np.uint8) |
|
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format( |
|
k, global_step, current_epoch, batch_idx |
|
) |
|
path = os.path.join(root, filename) |
|
os.makedirs(os.path.split(path)[0], exist_ok=True) |
|
Image.fromarray(grid).save(path) |
|
|
|
def log_img(self, pl_module, batch, batch_idx, split="train"): |
|
if ( |
|
self.check_frequency(batch_idx) |
|
and hasattr(pl_module, "log_images") |
|
and callable(pl_module.log_images) |
|
and self.max_images > 0 |
|
): |
|
logger = type(pl_module.logger) |
|
|
|
is_train = pl_module.training |
|
if is_train: |
|
pl_module.eval() |
|
|
|
with torch.no_grad(): |
|
images = pl_module.log_images(batch, split=split) |
|
|
|
for k in images: |
|
N = min(images[k].shape[0], self.max_images) |
|
images[k] = images[k][:N] |
|
if isinstance(images[k], torch.Tensor): |
|
images[k] = images[k].detach().cpu() |
|
if self.clamp: |
|
images[k] = torch.clamp(images[k], -1.0, 1.0) |
|
|
|
self.log_local( |
|
pl_module.logger.save_dir, |
|
split, |
|
images, |
|
pl_module.global_step, |
|
pl_module.current_epoch, |
|
batch_idx, |
|
) |
|
|
|
logger_log_images = self.logger_log_images.get( |
|
logger, lambda *args, **kwargs: None |
|
) |
|
logger_log_images(pl_module, images, pl_module.global_step, split) |
|
|
|
if is_train: |
|
pl_module.train() |
|
|
|
def check_frequency(self, batch_idx): |
|
if (batch_idx % self.batch_freq) == 0 or (batch_idx in self.log_steps): |
|
try: |
|
self.log_steps.pop(0) |
|
except IndexError: |
|
pass |
|
return True |
|
return False |
|
|
|
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): |
|
self.log_img(pl_module, batch, batch_idx, split="train") |
|
|
|
def on_validation_batch_end( |
|
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx |
|
): |
|
self.log_img(pl_module, batch, batch_idx, split="val") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") |
|
|
|
|
|
|
|
|
|
sys.path.append(os.getcwd()) |
|
|
|
parser = get_parser() |
|
parser = Trainer.add_argparse_args(parser) |
|
|
|
opt, unknown = parser.parse_known_args() |
|
if opt.name and opt.resume: |
|
raise ValueError( |
|
"-n/--name and -r/--resume cannot be specified both." |
|
"If you want to resume training in a new log folder, " |
|
"use -n/--name in combination with --resume_from_checkpoint" |
|
) |
|
if opt.resume: |
|
if not os.path.exists(opt.resume): |
|
raise ValueError("Cannot find {}".format(opt.resume)) |
|
if os.path.isfile(opt.resume): |
|
paths = opt.resume.split("/") |
|
idx = len(paths) - paths[::-1].index("logs") + 1 |
|
logdir = "/".join(paths[:idx]) |
|
ckpt = opt.resume |
|
else: |
|
assert os.path.isdir(opt.resume), opt.resume |
|
logdir = opt.resume.rstrip("/") |
|
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt") |
|
|
|
opt.resume_from_checkpoint = ckpt |
|
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml"))) |
|
opt.base = base_configs + opt.base |
|
_tmp = logdir.split("/") |
|
nowname = _tmp[_tmp.index("logs") + 1] |
|
else: |
|
if opt.name: |
|
name = "_" + opt.name |
|
elif opt.base: |
|
cfg_fname = os.path.split(opt.base[0])[-1] |
|
cfg_name = os.path.splitext(cfg_fname)[0] |
|
name = "_" + cfg_name |
|
else: |
|
name = "" |
|
nowname = now + name + opt.postfix |
|
logdir = os.path.join("logs", nowname) |
|
|
|
ckptdir = os.path.join(logdir, "checkpoints") |
|
cfgdir = os.path.join(logdir, "configs") |
|
seed_everything(opt.seed) |
|
|
|
try: |
|
|
|
configs = [OmegaConf.load(cfg) for cfg in opt.base] |
|
cli = OmegaConf.from_dotlist(unknown) |
|
config = OmegaConf.merge(*configs, cli) |
|
lightning_config = config.pop("lightning", OmegaConf.create()) |
|
|
|
trainer_config = lightning_config.get("trainer", OmegaConf.create()) |
|
|
|
trainer_config["distributed_backend"] = "ddp" |
|
trainer_config["replace_sampler_ddp"] = False |
|
trainer_config["strategy"] = "ddp" |
|
trainer_config["persistent_workers"] = True |
|
for k in nondefault_trainer_args(opt): |
|
trainer_config[k] = getattr(opt, k) |
|
if not "gpus" in trainer_config: |
|
del trainer_config["distributed_backend"] |
|
cpu = True |
|
else: |
|
gpuinfo = trainer_config["gpus"] |
|
print(f"Running on GPUs {gpuinfo}") |
|
cpu = False |
|
trainer_opt = argparse.Namespace(**trainer_config) |
|
lightning_config.trainer = trainer_config |
|
|
|
|
|
model = instantiate_from_config(config.model) |
|
|
|
trainer_kwargs = dict() |
|
|
|
|
|
|
|
|
|
|
|
|
|
default_logger_cfgs = { |
|
"wandb": { |
|
"target": "pytorch_lightning.loggers.WandbLogger", |
|
"params": { |
|
"name": nowname, |
|
"save_dir": logdir, |
|
"offline": opt.debug, |
|
"id": nowname, |
|
}, |
|
}, |
|
"testtube": { |
|
|
|
"target": "pytorch_lightning.loggers.TensorBoardLogger", |
|
"params": { |
|
"name": "testtube", |
|
"save_dir": logdir, |
|
}, |
|
}, |
|
} |
|
default_logger_cfg = default_logger_cfgs["testtube"] |
|
try: |
|
logger_cfg = lightning_config.logger |
|
except: |
|
logger_cfg = OmegaConf.create() |
|
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg) |
|
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg) |
|
|
|
|
|
|
|
default_modelckpt_cfg = { |
|
"checkpoint_callback": { |
|
"target": "pytorch_lightning.callbacks.ModelCheckpoint", |
|
"params": { |
|
"dirpath": ckptdir, |
|
"filename": "{epoch:06}", |
|
"verbose": True, |
|
"save_last": True, |
|
}, |
|
} |
|
} |
|
if hasattr(model, "monitor"): |
|
print(f"Monitoring {model.monitor} as checkpoint metric.") |
|
default_modelckpt_cfg["checkpoint_callback"]["params"][ |
|
"monitor" |
|
] = model.monitor |
|
default_modelckpt_cfg["checkpoint_callback"]["params"]["save_top_k"] = 3 |
|
try: |
|
modelckpt_cfg = lightning_config.modelcheckpoint |
|
except: |
|
modelckpt_cfg = OmegaConf.create() |
|
|
|
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg) |
|
|
|
|
|
|
|
|
|
|
|
default_callbacks_cfg = { |
|
"setup_callback": { |
|
"target": "celle_taming_main.SetupCallback", |
|
"params": { |
|
"resume": opt.resume, |
|
"now": now, |
|
"logdir": logdir, |
|
"ckptdir": ckptdir, |
|
"cfgdir": cfgdir, |
|
"config": config, |
|
"lightning_config": lightning_config, |
|
}, |
|
}, |
|
"image_logger": { |
|
"target": "celle_taming_main.ImageLogger", |
|
"params": { |
|
"batch_frequency": 2000, |
|
"max_images": 10, |
|
"clamp": True, |
|
"increase_log_steps": False, |
|
}, |
|
}, |
|
"learning_rate_logger": { |
|
"target": "celle_taming_main.LearningRateMonitor", |
|
"params": { |
|
"logging_interval": "step", |
|
|
|
}, |
|
}, |
|
} |
|
try: |
|
callbacks_cfg = lightning_config.callbacks |
|
except: |
|
callbacks_cfg = OmegaConf.create() |
|
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg) |
|
callbacks_cfg = OmegaConf.merge(modelckpt_cfg, callbacks_cfg) |
|
trainer_kwargs["callbacks"] = [ |
|
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs) |
|
|
|
|
|
data = instantiate_from_config(config.data) |
|
|
|
|
|
|
|
data.prepare_data() |
|
data.setup() |
|
|
|
|
|
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate |
|
if not cpu: |
|
ngpu = len(lightning_config.trainer.gpus.strip(",").split(",")) |
|
else: |
|
ngpu = 1 |
|
try: |
|
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches |
|
except: |
|
accumulate_grad_batches = 1 |
|
print(f"accumulate_grad_batches = {accumulate_grad_batches}") |
|
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches |
|
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr |
|
print( |
|
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format( |
|
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr |
|
) |
|
) |
|
|
|
|
|
def melk(*args, **kwargs): |
|
|
|
if trainer.global_rank == 0: |
|
print("Summoning checkpoint.") |
|
ckpt_path = os.path.join(ckptdir, "last.ckpt") |
|
trainer.save_checkpoint(ckpt_path) |
|
|
|
def divein(*args, **kwargs): |
|
if trainer.global_rank == 0: |
|
import pudb |
|
|
|
pudb.set_trace() |
|
|
|
import signal |
|
|
|
signal.signal(signal.SIGUSR1, melk) |
|
signal.signal(signal.SIGUSR2, divein) |
|
|
|
|
|
if opt.train: |
|
try: |
|
torch.compile(trainer.fit(model, data)) |
|
except Exception: |
|
melk() |
|
raise |
|
if not opt.no_test and not trainer.interrupted: |
|
trainer.test(model, data) |
|
except Exception: |
|
if opt.debug and trainer.global_rank == 0: |
|
try: |
|
import pudb as debugger |
|
except ImportError: |
|
import pdb as debugger |
|
debugger.post_mortem() |
|
raise |
|
finally: |
|
|
|
if opt.debug and not opt.resume and trainer.global_rank == 0: |
|
dst, name = os.path.split(logdir) |
|
dst = os.path.join(dst, "debug_runs", name) |
|
os.makedirs(os.path.split(dst)[0], exist_ok=True) |
|
os.rename(logdir, dst) |
|
|