Spaces:
No application file
No application file
Realcat
commited on
Commit
•
a96e8d6
1
Parent(s):
41de4df
add: poselib
Browse files- common/config.yaml +1 -1
- common/utils.py +189 -60
- requirements.txt +2 -1
common/config.yaml
CHANGED
@@ -7,7 +7,7 @@ defaults:
|
|
7 |
max_keypoints: 2000
|
8 |
keypoint_threshold: 0.05
|
9 |
enable_ransac: true
|
10 |
-
ransac_method:
|
11 |
ransac_reproj_threshold: 8
|
12 |
ransac_confidence: 0.999
|
13 |
ransac_max_iter: 10000
|
|
|
7 |
max_keypoints: 2000
|
8 |
keypoint_threshold: 0.05
|
9 |
enable_ransac: true
|
10 |
+
ransac_method: CV2_USAC_MAGSAC
|
11 |
ransac_reproj_threshold: 8
|
12 |
ransac_confidence: 0.999
|
13 |
ransac_max_iter: 10000
|
common/utils.py
CHANGED
@@ -8,6 +8,7 @@ import shutil
|
|
8 |
import numpy as np
|
9 |
import gradio as gr
|
10 |
from pathlib import Path
|
|
|
11 |
from itertools import combinations
|
12 |
from typing import Callable, Dict, Any, Optional, Tuple, List, Union
|
13 |
from hloc import matchers, extractors, logger
|
@@ -33,7 +34,7 @@ DEFAULT_SETTING_THRESHOLD = 0.1
|
|
33 |
DEFAULT_SETTING_MAX_FEATURES = 2000
|
34 |
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
35 |
DEFAULT_ENABLE_RANSAC = True
|
36 |
-
DEFAULT_RANSAC_METHOD = "
|
37 |
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
|
38 |
DEFAULT_RANSAC_CONFIDENCE = 0.999
|
39 |
DEFAULT_RANSAC_MAX_ITER = 10000
|
@@ -42,7 +43,6 @@ DEFAULT_MATCHING_THRESHOLD = 0.2
|
|
42 |
DEFAULT_SETTING_GEOMETRY = "Homography"
|
43 |
GRADIO_VERSION = gr.__version__.split(".")[0]
|
44 |
MATCHER_ZOO = None
|
45 |
-
models_already_loaded = {}
|
46 |
|
47 |
|
48 |
class ModelCache:
|
@@ -314,13 +314,141 @@ def set_null_pred(feature_type: str, pred: dict):
|
|
314 |
return pred
|
315 |
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
def filter_matches(
|
318 |
pred: Dict[str, Any],
|
319 |
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
320 |
ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
321 |
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
|
322 |
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
|
323 |
-
|
|
|
324 |
"""
|
325 |
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
326 |
If lines are available, filter by lines. If both keypoints and lines are
|
@@ -359,16 +487,17 @@ def filter_matches(
|
|
359 |
|
360 |
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
|
361 |
return set_null_pred(feature_type, pred)
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
)
|
370 |
-
|
371 |
-
if
|
|
|
372 |
if feature_type == "KEYPOINT":
|
373 |
pred["mmkeypoints0_orig"] = mkpts0[mask]
|
374 |
pred["mmkeypoints1_orig"] = mkpts1[mask]
|
@@ -376,9 +505,13 @@ def filter_matches(
|
|
376 |
elif feature_type == "LINE":
|
377 |
pred["mline_keypoints0_orig"] = mkpts0[mask]
|
378 |
pred["mline_keypoints1_orig"] = mkpts1[mask]
|
379 |
-
pred["H"] =
|
380 |
else:
|
381 |
set_null_pred(feature_type, pred)
|
|
|
|
|
|
|
|
|
382 |
return pred
|
383 |
|
384 |
|
@@ -419,34 +552,41 @@ def compute_geometry(
|
|
419 |
if mkpts0 is not None and mkpts1 is not None:
|
420 |
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
|
421 |
return {}
|
422 |
-
h1, w1, _ = pred["image0_orig"].shape
|
423 |
geo_info: Dict[str, List[float]] = {}
|
424 |
-
|
|
|
425 |
mkpts0,
|
426 |
mkpts1,
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
431 |
)
|
|
|
432 |
if F is not None:
|
433 |
geo_info["Fundamental"] = F.tolist()
|
434 |
-
|
|
|
435 |
mkpts1,
|
436 |
mkpts0,
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
441 |
)
|
|
|
|
|
442 |
if H is not None:
|
443 |
geo_info["Homography"] = H.tolist()
|
|
|
444 |
try:
|
445 |
_, H1, H2 = cv2.stereoRectifyUncalibrated(
|
446 |
mkpts0.reshape(-1, 2),
|
447 |
mkpts1.reshape(-1, 2),
|
448 |
F,
|
449 |
-
imgSize=(
|
450 |
)
|
451 |
geo_info["H1"] = H1.tolist()
|
452 |
geo_info["H2"] = H2.tolist()
|
@@ -475,19 +615,21 @@ def wrap_images(
|
|
475 |
Returns:
|
476 |
A tuple containing a base64 encoded image string and a dictionary with the transformation matrix.
|
477 |
"""
|
478 |
-
|
479 |
-
|
480 |
result_matrix: Optional[np.ndarray] = None
|
481 |
if geo_info is not None and len(geo_info) != 0:
|
482 |
rectified_image0 = img0
|
483 |
rectified_image1 = None
|
|
|
|
|
|
|
|
|
484 |
H = np.array(geo_info["Homography"])
|
485 |
|
486 |
title: List[str] = []
|
487 |
if geom_type == "Homography":
|
488 |
-
rectified_image1 = cv2.warpPerspective(
|
489 |
-
img1, H, (img0.shape[1], img0.shape[0])
|
490 |
-
)
|
491 |
result_matrix = H
|
492 |
title = ["Image 0", "Image 1 - warped"]
|
493 |
elif geom_type == "Fundamental":
|
@@ -496,8 +638,8 @@ def wrap_images(
|
|
496 |
return None, None
|
497 |
else:
|
498 |
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
|
499 |
-
rectified_image0 = cv2.warpPerspective(img0, H1, (
|
500 |
-
rectified_image1 = cv2.warpPerspective(img1, H2, (
|
501 |
result_matrix = np.array(geo_info["Fundamental"])
|
502 |
title = ["Image 0 - warped", "Image 1 - warped"]
|
503 |
else:
|
@@ -537,8 +679,8 @@ def generate_warp_images(
|
|
537 |
or "geom_info" not in matches_info.keys()
|
538 |
):
|
539 |
return None, None
|
540 |
-
geom_info
|
541 |
-
wrapped_images
|
542 |
if choice != "No":
|
543 |
wrapped_images, _ = wrap_images(
|
544 |
input_image0, input_image1, geom_info, choice
|
@@ -603,17 +745,10 @@ def run_ransac(
|
|
603 |
t1 = time.time()
|
604 |
|
605 |
# compute warp images
|
606 |
-
geom_info = compute_geometry(
|
607 |
-
state_cache,
|
608 |
-
ransac_method=ransac_method,
|
609 |
-
ransac_reproj_threshold=ransac_reproj_threshold,
|
610 |
-
ransac_confidence=ransac_confidence,
|
611 |
-
ransac_max_iter=ransac_max_iter,
|
612 |
-
)
|
613 |
output_wrapped, _ = generate_warp_images(
|
614 |
state_cache["image0_orig"],
|
615 |
state_cache["image1_orig"],
|
616 |
-
|
617 |
choice_geometry_type,
|
618 |
)
|
619 |
plt.close("all")
|
@@ -774,6 +909,7 @@ def run_matching(
|
|
774 |
ransac_confidence=ransac_confidence,
|
775 |
ransac_max_iter=ransac_max_iter,
|
776 |
)
|
|
|
777 |
# gr.Info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
778 |
logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
779 |
t1 = time.time()
|
@@ -791,21 +927,13 @@ def run_matching(
|
|
791 |
|
792 |
t1 = time.time()
|
793 |
# plot wrapped images
|
794 |
-
geom_info = compute_geometry(
|
795 |
-
pred,
|
796 |
-
ransac_method=ransac_method,
|
797 |
-
ransac_reproj_threshold=ransac_reproj_threshold,
|
798 |
-
ransac_confidence=ransac_confidence,
|
799 |
-
ransac_max_iter=ransac_max_iter,
|
800 |
-
)
|
801 |
output_wrapped, _ = generate_warp_images(
|
802 |
pred["image0_orig"],
|
803 |
pred["image1_orig"],
|
804 |
-
|
805 |
choice_geometry_type,
|
806 |
)
|
807 |
plt.close("all")
|
808 |
-
# del pred
|
809 |
# gr.Info(f"In summary, total time: {time.time()-t0:.3f}s")
|
810 |
logger.info(f"TOTAL time: {time.time()-t0:.3f}s")
|
811 |
|
@@ -825,7 +953,7 @@ def run_matching(
|
|
825 |
"extractor_conf": extract_conf,
|
826 |
},
|
827 |
{
|
828 |
-
"geom_info": geom_info,
|
829 |
},
|
830 |
output_wrapped,
|
831 |
state_cache,
|
@@ -835,14 +963,15 @@ def run_matching(
|
|
835 |
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
|
836 |
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
|
837 |
ransac_zoo = {
|
838 |
-
"
|
839 |
-
"
|
840 |
-
"
|
841 |
-
"
|
842 |
-
"
|
843 |
-
"
|
844 |
-
"
|
845 |
-
"
|
|
|
846 |
}
|
847 |
|
848 |
|
|
|
8 |
import numpy as np
|
9 |
import gradio as gr
|
10 |
from pathlib import Path
|
11 |
+
import poselib
|
12 |
from itertools import combinations
|
13 |
from typing import Callable, Dict, Any, Optional, Tuple, List, Union
|
14 |
from hloc import matchers, extractors, logger
|
|
|
34 |
DEFAULT_SETTING_MAX_FEATURES = 2000
|
35 |
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
36 |
DEFAULT_ENABLE_RANSAC = True
|
37 |
+
DEFAULT_RANSAC_METHOD = "CV2_USAC_MAGSAC"
|
38 |
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
|
39 |
DEFAULT_RANSAC_CONFIDENCE = 0.999
|
40 |
DEFAULT_RANSAC_MAX_ITER = 10000
|
|
|
43 |
DEFAULT_SETTING_GEOMETRY = "Homography"
|
44 |
GRADIO_VERSION = gr.__version__.split(".")[0]
|
45 |
MATCHER_ZOO = None
|
|
|
46 |
|
47 |
|
48 |
class ModelCache:
|
|
|
314 |
return pred
|
315 |
|
316 |
|
317 |
+
def _filter_matches_opencv(
|
318 |
+
kp0: np.ndarray,
|
319 |
+
kp1: np.ndarray,
|
320 |
+
method: int = cv2.RANSAC,
|
321 |
+
reproj_threshold: float = 3.0,
|
322 |
+
confidence: float = 0.99,
|
323 |
+
max_iter: int = 2000,
|
324 |
+
geometry_type: str = "Homography",
|
325 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
326 |
+
"""
|
327 |
+
Filters matches between two sets of keypoints using OpenCV's findHomography.
|
328 |
+
|
329 |
+
Args:
|
330 |
+
kp0 (np.ndarray): Array of keypoints from the first image.
|
331 |
+
kp1 (np.ndarray): Array of keypoints from the second image.
|
332 |
+
method (int, optional): RANSAC method. Defaults to "cv2.RANSAC".
|
333 |
+
reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to 3.0.
|
334 |
+
confidence (float, optional): RANSAC confidence. Defaults to 0.99.
|
335 |
+
max_iter (int, optional): RANSAC maximum iterations. Defaults to 2000.
|
336 |
+
geometry_type (str, optional): Type of geometry. Defaults to "Homography".
|
337 |
+
|
338 |
+
Returns:
|
339 |
+
Tuple[np.ndarray, np.ndarray]: Homography matrix and mask.
|
340 |
+
"""
|
341 |
+
if geometry_type == "Homography":
|
342 |
+
M, mask = cv2.findHomography(
|
343 |
+
kp0,
|
344 |
+
kp1,
|
345 |
+
method=method,
|
346 |
+
ransacReprojThreshold=reproj_threshold,
|
347 |
+
confidence=confidence,
|
348 |
+
maxIters=max_iter,
|
349 |
+
)
|
350 |
+
elif geometry_type == "Fundamental":
|
351 |
+
M, mask = cv2.findFundamentalMat(
|
352 |
+
kp0,
|
353 |
+
kp1,
|
354 |
+
method=method,
|
355 |
+
ransacReprojThreshold=reproj_threshold,
|
356 |
+
confidence=confidence,
|
357 |
+
maxIters=max_iter,
|
358 |
+
)
|
359 |
+
mask = np.array(mask.ravel().astype("bool"), dtype="bool")
|
360 |
+
return M, mask
|
361 |
+
|
362 |
+
|
363 |
+
def _filter_matches_poselib(
|
364 |
+
kp0: np.ndarray,
|
365 |
+
kp1: np.ndarray,
|
366 |
+
method: int = None, # not used
|
367 |
+
reproj_threshold: float = 3,
|
368 |
+
confidence: float = 0.99,
|
369 |
+
max_iter: int = 2000,
|
370 |
+
geometry_type: str = "Homography",
|
371 |
+
) -> dict:
|
372 |
+
"""
|
373 |
+
Filters matches between two sets of keypoints using the poselib library.
|
374 |
+
|
375 |
+
Args:
|
376 |
+
kp0 (np.ndarray): Array of keypoints from the first image.
|
377 |
+
kp1 (np.ndarray): Array of keypoints from the second image.
|
378 |
+
method (str, optional): RANSAC method. Defaults to "RANSAC".
|
379 |
+
reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to 3.
|
380 |
+
confidence (float, optional): RANSAC confidence. Defaults to 0.99.
|
381 |
+
max_iter (int, optional): RANSAC maximum iterations. Defaults to 2000.
|
382 |
+
geometry_type (str, optional): Type of geometry. Defaults to "Homography".
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
dict: Information about the homography estimation.
|
386 |
+
"""
|
387 |
+
ransac_options = {
|
388 |
+
"max_iterations": max_iter,
|
389 |
+
# "min_iterations": min_iter,
|
390 |
+
"success_prob": confidence,
|
391 |
+
"max_reproj_error": reproj_threshold,
|
392 |
+
# "progressive_sampling": args.sampler.lower() == 'prosac'
|
393 |
+
}
|
394 |
+
|
395 |
+
if geometry_type == "Homography":
|
396 |
+
M, info = poselib.estimate_homography(kp0, kp1, ransac_options)
|
397 |
+
elif geometry_type == "Fundamental":
|
398 |
+
M, info = poselib.estimate_fundamental(kp0, kp1, ransac_options)
|
399 |
+
else:
|
400 |
+
raise notImplementedError("Not Implemented")
|
401 |
+
|
402 |
+
return M, np.array(info["inliers"])
|
403 |
+
|
404 |
+
|
405 |
+
def proc_ransac_matches(
|
406 |
+
mkpts0: np.ndarray,
|
407 |
+
mkpts1: np.ndarray,
|
408 |
+
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
409 |
+
ransac_reproj_threshold: float = 3.0,
|
410 |
+
ransac_confidence: float = 0.99,
|
411 |
+
ransac_max_iter: int = 2000,
|
412 |
+
geometry_type: str = "Homography",
|
413 |
+
):
|
414 |
+
if ransac_method.startswith("CV2"):
|
415 |
+
logger.info(
|
416 |
+
f"ransac_method: {ransac_method}, geometry_type: {geometry_type}"
|
417 |
+
)
|
418 |
+
return _filter_matches_opencv(
|
419 |
+
mkpts0,
|
420 |
+
mkpts1,
|
421 |
+
ransac_zoo[ransac_method],
|
422 |
+
ransac_reproj_threshold,
|
423 |
+
ransac_confidence,
|
424 |
+
ransac_max_iter,
|
425 |
+
geometry_type,
|
426 |
+
)
|
427 |
+
elif ransac_method.startswith("POSELIB"):
|
428 |
+
logger.info(
|
429 |
+
f"ransac_method: {ransac_method}, geometry_type: {geometry_type}"
|
430 |
+
)
|
431 |
+
return _filter_matches_poselib(
|
432 |
+
mkpts0,
|
433 |
+
mkpts1,
|
434 |
+
None,
|
435 |
+
ransac_reproj_threshold,
|
436 |
+
ransac_confidence,
|
437 |
+
ransac_max_iter,
|
438 |
+
geometry_type,
|
439 |
+
)
|
440 |
+
else:
|
441 |
+
raise notImplementedError("Not Implemented")
|
442 |
+
|
443 |
+
|
444 |
def filter_matches(
|
445 |
pred: Dict[str, Any],
|
446 |
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
447 |
ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
448 |
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
|
449 |
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
|
450 |
+
ransac_estimator: str = None,
|
451 |
+
):
|
452 |
"""
|
453 |
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
454 |
If lines are available, filter by lines. If both keypoints and lines are
|
|
|
487 |
|
488 |
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
|
489 |
return set_null_pred(feature_type, pred)
|
490 |
+
|
491 |
+
geom_info = compute_geometry(
|
492 |
+
pred,
|
493 |
+
ransac_method=ransac_method,
|
494 |
+
ransac_reproj_threshold=ransac_reproj_threshold,
|
495 |
+
ransac_confidence=ransac_confidence,
|
496 |
+
ransac_max_iter=ransac_max_iter,
|
497 |
)
|
498 |
+
|
499 |
+
if "Homography" in geom_info.keys():
|
500 |
+
mask = geom_info["mask_h"]
|
501 |
if feature_type == "KEYPOINT":
|
502 |
pred["mmkeypoints0_orig"] = mkpts0[mask]
|
503 |
pred["mmkeypoints1_orig"] = mkpts1[mask]
|
|
|
505 |
elif feature_type == "LINE":
|
506 |
pred["mline_keypoints0_orig"] = mkpts0[mask]
|
507 |
pred["mline_keypoints1_orig"] = mkpts1[mask]
|
508 |
+
pred["H"] = np.array(geom_info["Homography"])
|
509 |
else:
|
510 |
set_null_pred(feature_type, pred)
|
511 |
+
# do not show mask
|
512 |
+
geom_info.pop("mask_h", None)
|
513 |
+
geom_info.pop("mask_f", None)
|
514 |
+
pred["geom_info"] = geom_info
|
515 |
return pred
|
516 |
|
517 |
|
|
|
552 |
if mkpts0 is not None and mkpts1 is not None:
|
553 |
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
|
554 |
return {}
|
|
|
555 |
geo_info: Dict[str, List[float]] = {}
|
556 |
+
|
557 |
+
F, mask_f = proc_ransac_matches(
|
558 |
mkpts0,
|
559 |
mkpts1,
|
560 |
+
ransac_method,
|
561 |
+
ransac_reproj_threshold,
|
562 |
+
ransac_confidence,
|
563 |
+
ransac_max_iter,
|
564 |
+
geometry_type="Fundamental",
|
565 |
)
|
566 |
+
|
567 |
if F is not None:
|
568 |
geo_info["Fundamental"] = F.tolist()
|
569 |
+
geo_info["mask_f"] = mask_f
|
570 |
+
H, mask_h = proc_ransac_matches(
|
571 |
mkpts1,
|
572 |
mkpts0,
|
573 |
+
ransac_method,
|
574 |
+
ransac_reproj_threshold,
|
575 |
+
ransac_confidence,
|
576 |
+
ransac_max_iter,
|
577 |
+
geometry_type="Homography",
|
578 |
)
|
579 |
+
|
580 |
+
h0, w0, _ = pred["image0_orig"].shape
|
581 |
if H is not None:
|
582 |
geo_info["Homography"] = H.tolist()
|
583 |
+
geo_info["mask_h"] = mask_h
|
584 |
try:
|
585 |
_, H1, H2 = cv2.stereoRectifyUncalibrated(
|
586 |
mkpts0.reshape(-1, 2),
|
587 |
mkpts1.reshape(-1, 2),
|
588 |
F,
|
589 |
+
imgSize=(w0, h0),
|
590 |
)
|
591 |
geo_info["H1"] = H1.tolist()
|
592 |
geo_info["H2"] = H2.tolist()
|
|
|
615 |
Returns:
|
616 |
A tuple containing a base64 encoded image string and a dictionary with the transformation matrix.
|
617 |
"""
|
618 |
+
h0, w0, _ = img0.shape
|
619 |
+
h1, w1, _ = img1.shape
|
620 |
result_matrix: Optional[np.ndarray] = None
|
621 |
if geo_info is not None and len(geo_info) != 0:
|
622 |
rectified_image0 = img0
|
623 |
rectified_image1 = None
|
624 |
+
if "Homography" not in geo_info:
|
625 |
+
logger.warning(f"{geom_type} not exist, maybe too less matches")
|
626 |
+
return None, None
|
627 |
+
|
628 |
H = np.array(geo_info["Homography"])
|
629 |
|
630 |
title: List[str] = []
|
631 |
if geom_type == "Homography":
|
632 |
+
rectified_image1 = cv2.warpPerspective(img1, H, (w0, h0))
|
|
|
|
|
633 |
result_matrix = H
|
634 |
title = ["Image 0", "Image 1 - warped"]
|
635 |
elif geom_type == "Fundamental":
|
|
|
638 |
return None, None
|
639 |
else:
|
640 |
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
|
641 |
+
rectified_image0 = cv2.warpPerspective(img0, H1, (w0, h0))
|
642 |
+
rectified_image1 = cv2.warpPerspective(img1, H2, (w1, h1))
|
643 |
result_matrix = np.array(geo_info["Fundamental"])
|
644 |
title = ["Image 0 - warped", "Image 1 - warped"]
|
645 |
else:
|
|
|
679 |
or "geom_info" not in matches_info.keys()
|
680 |
):
|
681 |
return None, None
|
682 |
+
geom_info = matches_info["geom_info"]
|
683 |
+
wrapped_images = None
|
684 |
if choice != "No":
|
685 |
wrapped_images, _ = wrap_images(
|
686 |
input_image0, input_image1, geom_info, choice
|
|
|
745 |
t1 = time.time()
|
746 |
|
747 |
# compute warp images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
748 |
output_wrapped, _ = generate_warp_images(
|
749 |
state_cache["image0_orig"],
|
750 |
state_cache["image1_orig"],
|
751 |
+
state_cache,
|
752 |
choice_geometry_type,
|
753 |
)
|
754 |
plt.close("all")
|
|
|
909 |
ransac_confidence=ransac_confidence,
|
910 |
ransac_max_iter=ransac_max_iter,
|
911 |
)
|
912 |
+
|
913 |
# gr.Info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
914 |
logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
915 |
t1 = time.time()
|
|
|
927 |
|
928 |
t1 = time.time()
|
929 |
# plot wrapped images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
930 |
output_wrapped, _ = generate_warp_images(
|
931 |
pred["image0_orig"],
|
932 |
pred["image1_orig"],
|
933 |
+
pred,
|
934 |
choice_geometry_type,
|
935 |
)
|
936 |
plt.close("all")
|
|
|
937 |
# gr.Info(f"In summary, total time: {time.time()-t0:.3f}s")
|
938 |
logger.info(f"TOTAL time: {time.time()-t0:.3f}s")
|
939 |
|
|
|
953 |
"extractor_conf": extract_conf,
|
954 |
},
|
955 |
{
|
956 |
+
"geom_info": pred["geom_info"],
|
957 |
},
|
958 |
output_wrapped,
|
959 |
state_cache,
|
|
|
963 |
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
|
964 |
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
|
965 |
ransac_zoo = {
|
966 |
+
"POSELIB": "LO-RANSAC",
|
967 |
+
"CV2_RANSAC": cv2.RANSAC,
|
968 |
+
"CV2_USAC_MAGSAC": cv2.USAC_MAGSAC,
|
969 |
+
"CV2_USAC_DEFAULT": cv2.USAC_DEFAULT,
|
970 |
+
"CV2_USAC_FM_8PTS": cv2.USAC_FM_8PTS,
|
971 |
+
"CV2_USAC_PROSAC": cv2.USAC_PROSAC,
|
972 |
+
"CV2_USAC_FAST": cv2.USAC_FAST,
|
973 |
+
"CV2_USAC_ACCURATE": cv2.USAC_ACCURATE,
|
974 |
+
"CV2_USAC_PARALLEL": cv2.USAC_PARALLEL,
|
975 |
}
|
976 |
|
977 |
|
requirements.txt
CHANGED
@@ -31,4 +31,5 @@ torchmetrics==0.6.0
|
|
31 |
torchvision==0.17.1
|
32 |
tqdm==4.65.0
|
33 |
yacs==0.1.8
|
34 |
-
onnxruntime
|
|
|
|
31 |
torchvision==0.17.1
|
32 |
tqdm==4.65.0
|
33 |
yacs==0.1.8
|
34 |
+
onnxruntime
|
35 |
+
poselib
|