import gradio as gr import torch from Unet import UNet import torchvision from torchvision.transforms import functional as f import os from timeit import default_timer as timer device = 'cpu' model = UNet(device=device, in_channels=3, num_classes=3) model.load_state_dict(torch.load("./data/models/Unet_v1.pth", map_location=torch.device('cpu'))) image_transforms = torchvision.transforms.Compose([ torchvision.transforms.Resize(size=(128, 128)), torchvision.transforms.ToTensor() ]) def predict(img): start_time = timer() img_transformed = image_transforms(img).to(device) model.eval() with torch.inference_mode(): y_logits = model(img_transformed.unsqueeze(dim=0)).squeeze(dim=0) predicted_label = torch.argmax(y_logits, dim=0).to('cpu') for i in range(3): for j in range(128): for z in range(128): img_transformed[i][j][z] = predicted_label[j][z] img_transformed = f.to_pil_image(img_transformed) return img_transformed, round((timer() - start_time), 3) title = "Animal Segmentation" description = "An UNet* feature extractor computer vision model to segment animal in an image.\nModel works more precisely on an image that only contains just one animal." article = "U-Net: Convolutional Networks for Biomedical Image Segmentation (https://arxiv.org/abs/1505.04597)" example_list = [["examples/" + example] for example in os.listdir("examples")] demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Image(label="Segmentation"), # what are the outputs? gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs # Create examples list from "examples/" directory examples=example_list, title=title, description=description, article=article) demo.launch()