import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline import torch from huggingface_hub import snapshot_download import openvino.runtime as ov from typing import Optional, Dict model_id = "Disty0/SoteMixV3" #model_id = "Disty0/sotediffusion-v2" #不可 #1024*512 記憶體不足 1024x1536 HIGH=512 WIDTH=512 batch_size = -1 #class CustomOVModelVaeDecoder(OVModelVaeDecoder): # def __init__( # self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, # ): # super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) pipe = OVStableDiffusionPipeline.from_pretrained(model_id) #pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""}) #有taesd很醜 #taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino") #pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) #pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1) #pipe.load_textual_inversion("./badhandv4.pt", "badhandv4") #pipe.load_textual_inversion("./Konpeto.pt", "Konpeto") # #pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style") #pipe.load_textual_inversion("sd-concepts-library/ruan-jia") #pipe.load_textual_inversion("sd-concepts-library/agm-style-nao") #pipe.compile() prompt="" negative_prompt="(worst quality, low quality, lowres), zombie, interlocked fingers," def infer(prompt,negative_prompt): image = pipe( prompt = prompt, negative_prompt = negative_prompt, width = HIGH, height = WIDTH, guidance_scale=7.5, num_inference_steps=30, num_images_per_prompt=1, ).images[0] return image examples = [ "A cute kitten, Japanese cartoon style.", "A sweet family, dad stands next to mom, mom holds baby girl.", "(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Disty0/SoteMixV3 {HIGH}x{WIDTH} Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()