File size: 3,490 Bytes
e4a88f4
 
 
 
5c7186f
e4a88f4
5c7186f
 
 
e4a88f4
a3b3cda
 
5c7186f
e4a88f4
5c7186f
 
 
e4a88f4
 
5c7186f
 
 
 
 
 
e4a88f4
 
5c7186f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a88f4
 
 
5c7186f
 
 
 
 
e4a88f4
 
5c7186f
 
e4a88f4
 
5c7186f
 
 
e4a88f4
 
 
 
 
5c7186f
e4a88f4
 
 
5c7186f
 
 
e4a88f4
 
 
 
a3b3cda
5c7186f
e4a88f4
 
 
 
 
 
 
 
 
5c7186f
e4a88f4
 
 
 
 
 
 
 
5c7186f
 
e4a88f4
5c7186f
 
e4a88f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict

model_id = "Disty0/SoteMixV3"

#model_id = "Disty0/sotediffusion-v2" #不可

#1024*512 記憶體不足
HIGH=512
WIDTH=512


batch_size = -1
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
    def __init__(
        self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
    ):
        super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)


pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})

taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
#pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
#<shigure-ui-style>
#pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
#pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")


pipe.compile()

prompt=""
negative_prompt="(worst quality, low quality, lowres), zombie, interlocked fingers,"

def infer(prompt,negative_prompt):

    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        width = HIGH, 
        height = WIDTH,
        guidance_scale=1.0,
        num_inference_steps=4,
        num_images_per_prompt=1,
    ).images[0] 
    
    return image


examples = [
    "A cute kitten, Japanese cartoon style.",
    "A sweet family, dad stands next to mom, mom holds baby girl.",
    "(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""


power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Disty0/SoteMixV3 {HIGH}x{WIDTH}
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )         
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()