Spaces:
Runtime error
Runtime error
import chainlit as cl | |
import tiktoken | |
import os | |
from dotenv import load_dotenv | |
# from langchain.document_loaders import PyMuPDFLoader | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_openai import OpenAIEmbeddings | |
# from langchain_community.chat_models import OpenAIEmbeddings | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# from langchain.vectorstores import Pinecone | |
from langchain_community.vectorstores import Pinecone | |
from operator import itemgetter | |
from langchain.schema.runnable import RunnablePassthrough | |
from langchain_openai import ChatOpenAI | |
from langchain.schema.runnable.config import RunnableConfig | |
from langchain_core.output_parsers import StrOutputParser | |
load_dotenv() | |
RAG_PROMPT = """ | |
CONTEXT: | |
{context} | |
QUERY: | |
{question} | |
You are a car specialist and can only provide your answers from the context. | |
Don't tell in your response that you are getting it from the context. | |
""" | |
init_settings = { | |
"model": "gpt-3.5-turbo", | |
"temperature": 0, | |
"max_tokens": 500, | |
"top_p": 1, | |
"frequency_penalty": 0, | |
"presence_penalty": 0, | |
} | |
# embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
def tiktoken_len(text): | |
tokens = tiktoken.encoding_for_model("gpt-3.5-turbo").encode( | |
text, | |
) | |
return len(tokens) | |
car_manual = PyMuPDFLoader(os.environ.get('pdfurl')) | |
car_manual_data = car_manual.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 400, | |
chunk_overlap = 50, | |
length_function = tiktoken_len) | |
car_manual_chunks = text_splitter.split_documents(car_manual_data) | |
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small") | |
vector_store = Pinecone.from_documents(car_manual_chunks, embedding_model, index_name=os.environ.get('index')) | |
retriever = vector_store.as_retriever() | |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
model = ChatOpenAI(model="gpt-3.5-turbo") | |
async def main(): | |
# text_splitter = RecursiveCharacterTextSplitter( | |
# chunk_size = 400, | |
# chunk_overlap = 50, | |
# length_function = tiktoken_len) | |
# car_manual_chunks = text_splitter.split_documents(car_manual_data) | |
# embedding_model = OpenAIEmbeddings(model="text-embedding-3-small") | |
# vector_store = Pinecone.from_documents(car_manual_chunks, embedding_model, index_name=os.environ.get('index')) | |
# retriever = vector_store.as_retriever() | |
# rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
# model = ChatOpenAI(model="gpt-3.5-turbo") | |
mecanic_qa_chain = ( | |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| RunnablePassthrough.assign(context=itemgetter("context")) | |
| rag_prompt | model | StrOutputParser() | |
) | |
cl.user_session.set("runnable", mecanic_qa_chain) | |
async def on_message(message: cl.Message): | |
runnable = cl.user_session.get("runnable") | |
msg = cl.Message(content="") | |
async for chunk in runnable.astream( | |
{"question":message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk) | |