Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,45 +8,49 @@ import json
|
|
8 |
|
9 |
FIREBASE_URL = os.getenv("FIREBASE_URL")
|
10 |
|
|
|
11 |
def fetch_from_firebase(model_id, data_type):
|
12 |
response = requests.get(f"{FIREBASE_URL}/{data_type}/{model_id}.json")
|
13 |
if response.status_code == 200:
|
14 |
return response.json()
|
15 |
return None
|
16 |
|
|
|
17 |
def save_to_firebase(model_id, data, data_type):
|
18 |
response = requests.put(
|
19 |
f"{FIREBASE_URL}/{data_type}/{model_id}.json", data=json.dumps(data)
|
20 |
)
|
21 |
return response.status_code == 200
|
22 |
|
|
|
23 |
def get_model_structure(model_id) -> list[str]:
|
24 |
struct_lines = fetch_from_firebase(model_id, "model_structures")
|
25 |
if struct_lines:
|
26 |
return struct_lines
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
-
model_id,
|
29 |
-
torch_dtype=torch.bfloat16,
|
30 |
-
device_map="cpu",
|
31 |
)
|
32 |
structure = {k: str(v.shape) for k, v in model.state_dict().items()}
|
33 |
struct_lines = [f"{k}: {v}" for k, v in structure.items()]
|
34 |
save_to_firebase(model_id, struct_lines, "model_structures")
|
35 |
return struct_lines
|
36 |
|
|
|
37 |
def get_tokenizer_vocab_size(model_id) -> int:
|
38 |
vocab_size = fetch_from_firebase(model_id, "tokenizer_vocab_sizes")
|
39 |
if vocab_size:
|
40 |
return vocab_size
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
vocab_size = tokenizer.vocab_size
|
43 |
save_to_firebase(model_id, vocab_size, "tokenizer_vocab_sizes")
|
44 |
return vocab_size
|
45 |
|
|
|
46 |
def compare_structures(struct1_lines: list[str], struct2_lines: list[str]):
|
47 |
diff = difflib.ndiff(struct1_lines, struct2_lines)
|
48 |
return diff
|
49 |
|
|
|
50 |
def display_diff(diff):
|
51 |
left_lines = []
|
52 |
right_lines = []
|
@@ -76,6 +80,7 @@ def display_diff(diff):
|
|
76 |
|
77 |
return left_html, right_html, diff_found
|
78 |
|
|
|
79 |
# Set Streamlit page configuration to wide mode
|
80 |
st.set_page_config(layout="wide")
|
81 |
|
@@ -101,21 +106,23 @@ model_id1 = st.text_input("Enter the first HuggingFace Model ID")
|
|
101 |
model_id2 = st.text_input("Enter the second HuggingFace Model ID")
|
102 |
|
103 |
if st.button("Compare Models"):
|
104 |
-
with st.spinner(
|
105 |
if model_id1 and model_id2:
|
106 |
# Get model structures
|
107 |
struct1 = get_model_structure(model_id1)
|
108 |
struct2 = get_model_structure(model_id2)
|
109 |
-
|
110 |
# Compare model structures
|
111 |
diff = compare_structures(struct1, struct2)
|
112 |
left_html, right_html, diff_found = display_diff(diff)
|
113 |
-
|
114 |
st.write("### Comparison Result")
|
115 |
if not diff_found:
|
116 |
st.success("The model structures are identical.")
|
117 |
-
|
118 |
-
col1, col2 = st.columns(
|
|
|
|
|
119 |
|
120 |
with col1:
|
121 |
st.write(f"### Model 1: {model_id1}")
|
@@ -124,20 +131,20 @@ if st.button("Compare Models"):
|
|
124 |
with col2:
|
125 |
st.write(f"### Model 2: {model_id2}")
|
126 |
st.markdown(right_html, unsafe_allow_html=True)
|
127 |
-
|
128 |
# Tokenizer verification
|
129 |
try:
|
130 |
vocab_size1 = get_tokenizer_vocab_size(model_id1)
|
131 |
vocab_size2 = get_tokenizer_vocab_size(model_id2)
|
132 |
-
|
133 |
if vocab_size1 == vocab_size2:
|
134 |
st.success("The tokenizer vocab sizes are identical.")
|
135 |
else:
|
136 |
st.warning("The tokenizer vocab sizes are different.")
|
137 |
-
|
138 |
st.write(f"**{model_id1} Tokenizer Vocab Size**: {vocab_size1}")
|
139 |
st.write(f"**{model_id2} Tokenizer Vocab Size**: {vocab_size2}")
|
140 |
-
|
141 |
except Exception as e:
|
142 |
st.error(f"Error loading tokenizers: {e}")
|
143 |
else:
|
|
|
8 |
|
9 |
FIREBASE_URL = os.getenv("FIREBASE_URL")
|
10 |
|
11 |
+
|
12 |
def fetch_from_firebase(model_id, data_type):
|
13 |
response = requests.get(f"{FIREBASE_URL}/{data_type}/{model_id}.json")
|
14 |
if response.status_code == 200:
|
15 |
return response.json()
|
16 |
return None
|
17 |
|
18 |
+
|
19 |
def save_to_firebase(model_id, data, data_type):
|
20 |
response = requests.put(
|
21 |
f"{FIREBASE_URL}/{data_type}/{model_id}.json", data=json.dumps(data)
|
22 |
)
|
23 |
return response.status_code == 200
|
24 |
|
25 |
+
|
26 |
def get_model_structure(model_id) -> list[str]:
|
27 |
struct_lines = fetch_from_firebase(model_id, "model_structures")
|
28 |
if struct_lines:
|
29 |
return struct_lines
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
model_id, torch_dtype=torch.bfloat16, device_map="cpu", trust_remote_code=True
|
|
|
|
|
32 |
)
|
33 |
structure = {k: str(v.shape) for k, v in model.state_dict().items()}
|
34 |
struct_lines = [f"{k}: {v}" for k, v in structure.items()]
|
35 |
save_to_firebase(model_id, struct_lines, "model_structures")
|
36 |
return struct_lines
|
37 |
|
38 |
+
|
39 |
def get_tokenizer_vocab_size(model_id) -> int:
|
40 |
vocab_size = fetch_from_firebase(model_id, "tokenizer_vocab_sizes")
|
41 |
if vocab_size:
|
42 |
return vocab_size
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
44 |
vocab_size = tokenizer.vocab_size
|
45 |
save_to_firebase(model_id, vocab_size, "tokenizer_vocab_sizes")
|
46 |
return vocab_size
|
47 |
|
48 |
+
|
49 |
def compare_structures(struct1_lines: list[str], struct2_lines: list[str]):
|
50 |
diff = difflib.ndiff(struct1_lines, struct2_lines)
|
51 |
return diff
|
52 |
|
53 |
+
|
54 |
def display_diff(diff):
|
55 |
left_lines = []
|
56 |
right_lines = []
|
|
|
80 |
|
81 |
return left_html, right_html, diff_found
|
82 |
|
83 |
+
|
84 |
# Set Streamlit page configuration to wide mode
|
85 |
st.set_page_config(layout="wide")
|
86 |
|
|
|
106 |
model_id2 = st.text_input("Enter the second HuggingFace Model ID")
|
107 |
|
108 |
if st.button("Compare Models"):
|
109 |
+
with st.spinner("Comparing models and loading tokenizers..."):
|
110 |
if model_id1 and model_id2:
|
111 |
# Get model structures
|
112 |
struct1 = get_model_structure(model_id1)
|
113 |
struct2 = get_model_structure(model_id2)
|
114 |
+
|
115 |
# Compare model structures
|
116 |
diff = compare_structures(struct1, struct2)
|
117 |
left_html, right_html, diff_found = display_diff(diff)
|
118 |
+
|
119 |
st.write("### Comparison Result")
|
120 |
if not diff_found:
|
121 |
st.success("The model structures are identical.")
|
122 |
+
|
123 |
+
col1, col2 = st.columns(
|
124 |
+
[1.5, 1.5]
|
125 |
+
) # Adjust the ratio to make columns wider
|
126 |
|
127 |
with col1:
|
128 |
st.write(f"### Model 1: {model_id1}")
|
|
|
131 |
with col2:
|
132 |
st.write(f"### Model 2: {model_id2}")
|
133 |
st.markdown(right_html, unsafe_allow_html=True)
|
134 |
+
|
135 |
# Tokenizer verification
|
136 |
try:
|
137 |
vocab_size1 = get_tokenizer_vocab_size(model_id1)
|
138 |
vocab_size2 = get_tokenizer_vocab_size(model_id2)
|
139 |
+
|
140 |
if vocab_size1 == vocab_size2:
|
141 |
st.success("The tokenizer vocab sizes are identical.")
|
142 |
else:
|
143 |
st.warning("The tokenizer vocab sizes are different.")
|
144 |
+
|
145 |
st.write(f"**{model_id1} Tokenizer Vocab Size**: {vocab_size1}")
|
146 |
st.write(f"**{model_id2} Tokenizer Vocab Size**: {vocab_size2}")
|
147 |
+
|
148 |
except Exception as e:
|
149 |
st.error(f"Error loading tokenizers: {e}")
|
150 |
else:
|