|
import gradio as gr |
|
from PIL import Image |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, Wav2Vec2Processor, Wav2Vec2ForCTC, ViTFeatureExtractor, ViTForImageClassification |
|
|
|
import soundfile as sf |
|
import torch |
|
import numpy as np |
|
import time |
|
|
|
|
|
class_names = { |
|
0: "al qarawiyyin", |
|
1: "bab mansour el aleuj", |
|
2: "chaouara tannery", |
|
3: "hassan tower", |
|
4: "jamae el fna", |
|
5: "koutoubia mosque", |
|
6: "madrasa ben youssef", |
|
7: "majorel gardens", |
|
8: "menara" |
|
} |
|
|
|
model_name_or_path = "microsoft/DialoGPT-large" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="left", use_fast=False) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True) |
|
|
|
wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") |
|
wav2vec2_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") |
|
|
|
vit_model = ViTForImageClassification.from_pretrained('ohidaoui/monuments-morocco-v1') |
|
vit_feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') |
|
|
|
|
|
def handle_text(text): |
|
chat_output = chat({"question": text}) |
|
return chat_output["answer"] |
|
|
|
|
|
def get_class_name(class_idx): |
|
return class_names[class_idx] |
|
|
|
def handle_image(img): |
|
img = np.array(img) |
|
inputs = vit_feature_extractor(images=img, return_tensors="pt") |
|
outputs = vit_model(**inputs) |
|
predicted_class_idx = torch.argmax(outputs.logits, dim=1).item() |
|
predicted_class_name = get_class_name(predicted_class_idx) |
|
chat_output = chat({"question": "what is " + predicted_class_name}) |
|
return chat_output["answer"] |
|
|
|
|
|
def handle_audio(audio): |
|
audio = audio[1] |
|
input_values = wav2vec2_processor(audio, sampling_rate=16_000, return_tensors="pt").input_values |
|
input_values = input_values.to(torch.float32) |
|
logits = wav2vec2_model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcriptions = wav2vec2_processor.decode(predicted_ids[0]) |
|
chat_output = chat({"question": transcriptions}) |
|
return chat_output["answer"] |
|
|
|
|
|
def chatbot(history, text=None, img=None, audio=None): |
|
text_output = handle_text(text) if text is not None else '' |
|
img_output = handle_image(img) if img is not None else '' |
|
audio_output = handle_audio(audio) if audio is not None else '' |
|
outputs = [o for o in [text_output, img_output, audio_output] if o] |
|
output = "\n".join(outputs) |
|
|
|
history[-1][1] = output |
|
for character in output: |
|
history[-1][1] += character |
|
time.sleep(0.05) |
|
yield history |
|
|
|
with gr.Blocks() as demo: |
|
chat_interface = gr.Chatbot([], elem_id="chatbot", height=750) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=0.85): |
|
text_input = gr.Textbox( |
|
show_label=False, |
|
placeholder="Input Text here...", |
|
container=False |
|
) |
|
with gr.Column(scale=0.15, min_width=0): |
|
img_input = gr.Image() |
|
audio_input = gr.Audio(source="microphone", label="Audio Input") |
|
|
|
text_msg = text_input.submit(chatbot, [chat_interface, text_input], [chat_interface, text_input], queue=False) |
|
img_msg = img_input.upload(chatbot, [chat_interface, img_input], [chat_interface, img_input], queue=False) |
|
audio_msg = audio_input.upload(chatbot, [chat_interface, audio_input], [chat_interface, audio_input], queue=False) |
|
|
|
demo.queue() |
|
demo.launch(share=True) |