import re import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer def extract_code_codegen(input_text): pattern = r"'''py\n(.*?)'''" match = re.search(pattern, input_text, re.DOTALL) if match: return match.group(1) else: return None # Return None if no match is found def extract_code_mistral(input_text): pattern = r'\[CODE\](.*?)\[/CODE\]' match = re.search(pattern, input_text, re.DOTALL) if match: return match.group(1) else: return None # Return None if no match is found def generate_code(input_text,modelName): if(modelName == "codegen-350M"): input_ids = codeGenTokenizer(input_text, return_tensors="pt").input_ids generated_ids = codeGenModel.generate(input_ids, max_length=128) result = codeGenTokenizer.decode(generated_ids[0], skip_special_tokens=True) return extract_code_codegen(result) elif(modelName == "mistral-7b"): input_ids = mistralTokenizer(generate_prompt_mistral(input_text), return_tensors="pt").input_ids generated_ids = mistralModel.generate(input_ids, max_length=128) result = mistralTokenizer.decode(generated_ids[0], skip_special_tokens=True) return extract_code_mistral(result) else: return None def generate_prompt_mistral(text): system_msg = "Below is an instruction that describes a programming task. Write a response code that appropriately completes the request.\n" return f"[INST] {system_msg}\n{text} [/INST]" def respond(message, chat_history, additional_inputs): return f"Here's an example code:\n\n```python\n{generate_code(message,additional_inputs)}\n```" codeGenModel = AutoModelForCausalLM.from_pretrained('parsak/codegen-350M-mono-lora-instruction') mistralModel = AutoModelForCausalLM.from_pretrained('parsak/mistral-code-7b-instruct') codeGenTokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-mono') mistralTokenizer = AutoTokenizer.from_pretrained('parsak/mistral-code-7b-instruct') codeGenTokenizer.pad_token_id = 0 codeGenTokenizer.padding_side = "left" dropdown = gr.Dropdown(label="Models",choices=["codegen-350M", "mistral-7b"], value="codegen-350M") interface = gr.ChatInterface(respond, retry_btn= gr.Button(value="Retry"), undo_btn=None, clear_btn=gr.Button(value="Clear"), additional_inputs=[ dropdown ] ) if __name__ == "__main__": interface.launch()