File size: 4,959 Bytes
cbbae5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb367d
cbbae5c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import CTransformers
from langchain.llms import Replicate
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import os
from dotenv import load_dotenv
import tempfile


load_dotenv()


def initialize_session_state():
    if 'history' not in st.session_state:
        st.session_state['history'] = []

    if 'generated' not in st.session_state:
        st.session_state['generated'] = ["Hello! Ask me anything about 🤗"]

    if 'past' not in st.session_state:
        st.session_state['past'] = ["Hey! 👋"]

def conversation_chat(query, chain, history):
    result = chain({"question": query, "chat_history": history})
    history.append((query, result["answer"]))
    return result["answer"]

def display_chat_history(chain):
    reply_container = st.container()
    container = st.container()

    with container:
        with st.form(key='my_form', clear_on_submit=True):
            user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input')
            submit_button = st.form_submit_button(label='Send')

        if submit_button and user_input:
            with st.spinner('Generating response...'):
                output = conversation_chat(user_input, chain, st.session_state['history'])

            st.session_state['past'].append(user_input)
            st.session_state['generated'].append(output)

    if st.session_state['generated']:
        with reply_container:
            for i in range(len(st.session_state['generated'])):
                message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
                message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")

def create_conversational_chain(vector_store):
    load_dotenv()
    # Create llm
    #llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",
                        #streaming=True, 
                        #callbacks=[StreamingStdOutCallbackHandler()],
                        #model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
    llm = Replicate(
        streaming = True,
        model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", 
        callbacks=[StreamingStdOutCallbackHandler()],
        input = {"temperature": 0.01, "max_length" :500,"top_p":1})
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

    chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
                                                 retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
                                                 memory=memory)
    return chain

def main():
    load_dotenv()
    # Initialize session state
    initialize_session_state()
    st.title("Multi-Docs ChatBot using llama-2-70b :books:")
    # Initialize Streamlit
    st.sidebar.title("Document Processing")
    uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)


    if uploaded_files:
        text = []
        for file in uploaded_files:
            file_extension = os.path.splitext(file.name)[1]
            with tempfile.NamedTemporaryFile(delete=False) as temp_file:
                temp_file.write(file.read())
                temp_file_path = temp_file.name

            loader = None
            if file_extension == ".pdf":
                loader = PyPDFLoader(temp_file_path)
            elif file_extension == ".docx" or file_extension == ".doc":
                loader = Docx2txtLoader(temp_file_path)
            elif file_extension == ".txt":
                loader = TextLoader(temp_file_path)

            if loader:
                text.extend(loader.load())
                os.remove(temp_file_path)

        text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
        text_chunks = text_splitter.split_documents(text)

        # Create embeddings
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", 
                                           model_kwargs={'device': 'gpu'})

        # Create vector store
        vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)

        # Create the chain object
        chain = create_conversational_chain(vector_store)

        
        display_chat_history(chain)

if __name__ == "__main__":
    main()