YanshekWoo's picture
add requirements.txt
7a75ce5
raw
history blame
2.26 kB
import gradio as gr
from typing import List, Optional
from transformers import BertTokenizer, BartForConditionalGeneration
title = "HIT-TMG/dialogue-bart-large-chinese"
description = """
This is a fine-tuned version of HIT-TMG/dialogue-bart-large-chinese on the DuSinc dataset. \n
See some details of model card at https://huggingface.co/HIT-TMG/dialogue-bart-large-chinese-DuSinc . \n\n
Besides starting the conversation from scratch, you can also input the whole dialogue history utterance by utterance seperated by '[SEP]'. \n
(e.g. "可以认识一下吗[SEP]当然可以啦,你好。[SEP]嘿嘿你好,请问你最近在忙什么呢?[SEP]我最近养了一只狗狗,我在训练它呢。") \n
"""
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese-DuSinc")
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese-DuSinc")
tokenizer.truncation_side = 'left'
max_length = 512
def chat_func(input_utterance: str, history: Optional[List[str]] = None):
if history is not None:
history.extend(input_utterance.split(tokenizer.sep_token))
else:
history = input_utterance.split(tokenizer.sep_token)
history_str = "[history] " + tokenizer.sep_token.join(history)
input_ids = tokenizer(history_str,
return_tensors='pt',
truncation=True,
max_length=max_length).input_ids
output_ids = model.generate(input_ids,
max_new_tokens=30)[0]
response = tokenizer.decode(output_ids, skip_special_tokens=True)
history.append(response)
if len(history) % 2 == 0:
display_utterances = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
else:
display_utterances = [("", history[0])] + [(history[i], history[i + 1]) for i in range(1, len(history) - 1, 2)]
return display_utterances, history
demo = gr.Interface(fn=chat_func,
title=title,
description=description,
inputs=[gr.Textbox(lines=1, placeholder="Input current utterance"), "state"],
outputs=["chatbot", "state"])
if __name__ == "__main__":
demo.launch()