Spaces:
Runtime error
Runtime error
File size: 2,585 Bytes
9e02690 9bd55b7 9e02690 cdbedd8 7a75ce5 9e02690 e2a77ad cdbedd8 e2a77ad 9e02690 7e3a12b 7b1042c 9e02690 7b1042c 7e3a12b 9e02690 e2a77ad 9e02690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import gradio as gr
from typing import List, Optional
from transformers import BertTokenizer, BartForConditionalGeneration
title = "HIT-TMG/dialogue-bart-large-chinese-DuSinc"
description = """
This is a fine-tuned version of HIT-TMG/dialogue-bart-large-chinese on the DuSinc dataset.
But it only has chit-chat ability without knowledge since we haven't introduced knowledge retrieval interface yet.\n
See some details of model card at https://huggingface.co/HIT-TMG/dialogue-bart-large-chinese-DuSinc . \n\n
Besides starting the conversation from scratch, you can also input the whole dialogue history utterance by utterance seperated by '[SEP]'. \n
"""
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese-DuSinc")
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese-DuSinc")
tokenizer.truncation_side = 'left'
max_length = 512
examples = [
["你有什么爱好吗"],
["你好。[SEP]嘿嘿你好,请问你最近在忙什么呢?[SEP]我最近养了一只狗狗,我在训练它呢。"]
]
def chat_func(input_utterance: str, history: Optional[List[str]] = None):
if history is not None:
history.extend(input_utterance.split(tokenizer.sep_token))
else:
history = input_utterance.split(tokenizer.sep_token)
history_str = "[history] " + tokenizer.sep_token.join(history)
input_ids = tokenizer(history_str,
return_tensors='pt',
truncation=True,
max_length=max_length,
).input_ids
output_ids = model.generate(input_ids,
max_new_tokens=30,
top_p=0.95,
do_sample=True,
num_beams=4)[0]
response = tokenizer.decode(output_ids, skip_special_tokens=True)
history.append(response)
if len(history) % 2 == 0:
display_utterances = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
else:
display_utterances = [("", history[0])] + [(history[i], history[i + 1]) for i in range(1, len(history) - 1, 2)]
return display_utterances, history
demo = gr.Interface(fn=chat_func,
title=title,
description=description,
inputs=[gr.Textbox(lines=1, placeholder="Input current utterance"), "state"],
examples=examples,
outputs=["chatbot", "state"])
if __name__ == "__main__":
demo.launch()
|