Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
data.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import multiprocessing
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Dict, List
|
6 |
+
|
7 |
+
from datasets import load_dataset, Dataset
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
+
|
13 |
+
|
14 |
+
DATASET_NAME_PATTERN = re.compile(r"[^a-zA-Z0-9]")
|
15 |
+
|
16 |
+
|
17 |
+
def download_dataset(
|
18 |
+
ds_name: str,
|
19 |
+
ds_config: str = None,
|
20 |
+
ds_split: str = "train",
|
21 |
+
):
|
22 |
+
"""
|
23 |
+
Download a dataset from the HuggingFace Hub. Will only save the
|
24 |
+
|
25 |
+
Args:
|
26 |
+
ds_name (`str`):
|
27 |
+
The name of the dataset to load.
|
28 |
+
ds_config (`str`, *optional*, Defaults to `None`):
|
29 |
+
The configuration of the dataset to load.
|
30 |
+
ds_split (`str`, *optional*, Defaults to `"train"`):
|
31 |
+
The split of the dataset to load.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
len(ds) (`int`):
|
35 |
+
The number of rows in the dataset.
|
36 |
+
"""
|
37 |
+
if ds_name == "wikipedia":
|
38 |
+
ds = load_wikipedia(ds_name, ds_config)
|
39 |
+
else:
|
40 |
+
if ds_config == "":
|
41 |
+
ds_config = None
|
42 |
+
ds = load_dataset(ds_name, ds_config, split=ds_split)
|
43 |
+
|
44 |
+
chunk_and_save_dataset(
|
45 |
+
ds, ds_name=ds_name, ds_config=ds_config, suffix=f"_{ds_split}_raw"
|
46 |
+
)
|
47 |
+
|
48 |
+
return len(ds)
|
49 |
+
|
50 |
+
|
51 |
+
def load_wikipedia(ds_name, ds_config):
|
52 |
+
"""
|
53 |
+
Stream the wikipedia dataset from the HuggingFace Hub.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
ds_name (`str`):
|
57 |
+
The name of the dataset to load. Must be `"wikipedia"`.
|
58 |
+
ds_config (`str`, *optional*, Defaults to `None`):
|
59 |
+
The configuration of the dataset to load.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
ds (`datasets.Dataset`):
|
63 |
+
"""
|
64 |
+
ds = load_dataset(ds_name, ds_config, streaming=True, split="train")
|
65 |
+
|
66 |
+
def gen():
|
67 |
+
for example in ds:
|
68 |
+
yield {"text": example["text"]}
|
69 |
+
|
70 |
+
return Dataset.from_generator(gen)
|
71 |
+
|
72 |
+
|
73 |
+
def chunk_and_save_dataset(
|
74 |
+
ds: Dataset,
|
75 |
+
chunk_size: int = 20_000,
|
76 |
+
ds_name: str = None,
|
77 |
+
ds_config: str = None,
|
78 |
+
suffix: str = "",
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
Chunk a dataset into smaller datasets of size `chunk_size`.
|
82 |
+
The name of the dataset will be used to create a folder in `/data`.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
ds (`Dataset`):
|
86 |
+
The dataset to chunk.
|
87 |
+
chunk_size (`int`, *optional*, Defaults to `20_000`):
|
88 |
+
The size of each chunk. Defaults to `20_000`.
|
89 |
+
ds_name (`str`, *optional*, Defaults to `None`):
|
90 |
+
The name of the dataset to load.
|
91 |
+
ds_config (`str`, *optional*, Defaults to `None`):
|
92 |
+
The configuration of the dataset to load.
|
93 |
+
suffix (`str`, *optional*, Defaults to `""`):
|
94 |
+
The suffix to add to the dataset name.
|
95 |
+
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
chunks (`List[Dataset]`):
|
99 |
+
The list of chunks.
|
100 |
+
"""
|
101 |
+
|
102 |
+
if ds_config is None:
|
103 |
+
ds_config = ""
|
104 |
+
|
105 |
+
folder = Path("/data") / DATASET_NAME_PATTERN.sub("", ds_name + ds_config)
|
106 |
+
folder.mkdir(exist_ok=True, parents=True)
|
107 |
+
|
108 |
+
for chunk_num, start_idx in enumerate(range(0, len(ds), chunk_size)):
|
109 |
+
end_idx = min(start_idx + chunk_size, len(ds))
|
110 |
+
|
111 |
+
temp = ds.select(range(start_idx, end_idx))
|
112 |
+
|
113 |
+
temp.to_parquet(str(folder / f"chunk_{chunk_num}{suffix}"))
|
114 |
+
|
115 |
+
|
116 |
+
def tokenize_dataset(
|
117 |
+
ds_name: str,
|
118 |
+
ds_config: str = None,
|
119 |
+
ds_split: str = "train",
|
120 |
+
model_name: str = None,
|
121 |
+
opt_level: str = None,
|
122 |
+
column_name: str = "text",
|
123 |
+
num2skip: int = 0,
|
124 |
+
num2embed: int = -1,
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
Tokenize the examples using the tokenizer. Sort by length
|
128 |
+
|
129 |
+
Args:
|
130 |
+
ds_name (`str`):
|
131 |
+
The name of the dataset to load.
|
132 |
+
|
133 |
+
ds_config (`str`, *optional*, Defaults to `None`):
|
134 |
+
The configuration of the dataset to load.
|
135 |
+
|
136 |
+
model_name (`str`, *optional*, Defaults to `None`):
|
137 |
+
The name of the model to use for tokenization.
|
138 |
+
|
139 |
+
opt_level (`str`, *optional*, Defaults to `None`):
|
140 |
+
The optimization level to use for tokenization.
|
141 |
+
|
142 |
+
column_name (`str`, *optional*, defaults to `text`):
|
143 |
+
column name to use for tokenization. Defaults to `text`
|
144 |
+
|
145 |
+
num2skip (`int`, *optional*, defaults to `0`):
|
146 |
+
number of rows to skip. Defaults to `0`
|
147 |
+
|
148 |
+
num2embed (`int`, *optional*, defaults to `-1`):
|
149 |
+
number of rows to embed. Defaults to `-1`, which means all rows.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
ds (`Dataset`):
|
153 |
+
"""
|
154 |
+
|
155 |
+
# TODO: option for controlling length for models that can go shorter/longer than 512
|
156 |
+
|
157 |
+
folder = Path("/data") / DATASET_NAME_PATTERN.sub("", ds_name + ds_config)
|
158 |
+
files = list(map(str, folder.glob(f"chunk_*_{ds_split}_raw")))
|
159 |
+
|
160 |
+
ds = load_dataset("parquet", data_files=files, split="train")
|
161 |
+
|
162 |
+
if num2embed == -1:
|
163 |
+
num2embed = len(ds)
|
164 |
+
ds = ds.select(range(num2skip, num2skip + num2embed))
|
165 |
+
|
166 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
167 |
+
|
168 |
+
padding = "max_length" if opt_level == "O4" else False
|
169 |
+
max_length = 512
|
170 |
+
|
171 |
+
def tokenize(
|
172 |
+
examples: Dict[str, List[str]],
|
173 |
+
):
|
174 |
+
tokenized = tokenizer(
|
175 |
+
examples[column_name],
|
176 |
+
truncation=True,
|
177 |
+
padding=padding,
|
178 |
+
max_length=max_length,
|
179 |
+
)
|
180 |
+
tokenized["length"] = [len(x) for x in tokenized["input_ids"]]
|
181 |
+
|
182 |
+
return tokenized
|
183 |
+
|
184 |
+
tds = ds.map(
|
185 |
+
tokenize,
|
186 |
+
batched=True,
|
187 |
+
batch_size=1000,
|
188 |
+
remove_columns=set(ds.column_names) - {column_name},
|
189 |
+
num_proc=multiprocessing.cpu_count(),
|
190 |
+
desc="Tokenizing",
|
191 |
+
)
|
192 |
+
|
193 |
+
# sort to minimize padding
|
194 |
+
if padding != "max_length":
|
195 |
+
tds = tds.sort("length")
|
196 |
+
|
197 |
+
chunk_and_save_dataset(
|
198 |
+
tds, ds_name=ds_name, ds_config=ds_config, suffix=f"_{ds_split}_tokenized"
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
def load_tokenized_dataset(
|
203 |
+
ds_name: str,
|
204 |
+
ds_config: str = None,
|
205 |
+
ds_split: str = "train",
|
206 |
+
):
|
207 |
+
"""
|
208 |
+
Load a tokenized dataset from disk.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
ds_name (`str`):
|
212 |
+
The name of the dataset to load.
|
213 |
+
|
214 |
+
ds_config (`str`, *optional*, Defaults to `None`):
|
215 |
+
The configuration of the dataset to load.
|
216 |
+
|
217 |
+
ds_split (`str`, *optional*, Defaults to `"train"`):
|
218 |
+
The split of the dataset to load.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
ds (`Dataset`):
|
222 |
+
"""
|
223 |
+
|
224 |
+
folder = Path("/data") / DATASET_NAME_PATTERN.sub("", ds_name + ds_config)
|
225 |
+
files = list(map(str, folder.glob(f"chunk_*_{ds_split}_tokenized")))
|
226 |
+
|
227 |
+
return load_dataset("parquet", data_files=files, split="train")
|
infer.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import shutil
|
4 |
+
from pathlib import Path
|
5 |
+
from functools import partial
|
6 |
+
from typing import Union, Dict, List
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import datasets
|
11 |
+
from datasets import load_dataset, Dataset
|
12 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, DataCollatorWithPadding
|
13 |
+
from huggingface_hub import Repository, create_repo, HfApi
|
14 |
+
from optimum.onnxruntime import (
|
15 |
+
AutoOptimizationConfig,
|
16 |
+
ORTModelForFeatureExtraction,
|
17 |
+
ORTOptimizer,
|
18 |
+
)
|
19 |
+
|
20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
+
|
22 |
+
opt_configs = {
|
23 |
+
"O2": AutoOptimizationConfig.O2(),
|
24 |
+
"O3": AutoOptimizationConfig.O3(),
|
25 |
+
"O4": AutoOptimizationConfig.O4(),
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
def get_batch_size(device_name: str, model_name: str, opt_level: str):
|
30 |
+
"""
|
31 |
+
TODO: run actual tests
|
32 |
+
|
33 |
+
T4 has 16GB
|
34 |
+
A10 has 24GB
|
35 |
+
|
36 |
+
Args:
|
37 |
+
device_name (`str`):
|
38 |
+
The name of the GPU device in use.
|
39 |
+
model_name (`str`):
|
40 |
+
The name of the model in use.
|
41 |
+
opt_level (`str`):
|
42 |
+
The optimization level in use.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
`int`:
|
46 |
+
The batch size to use.
|
47 |
+
"""
|
48 |
+
|
49 |
+
if "small" in model_name:
|
50 |
+
bs = 192
|
51 |
+
elif "base" in model_name:
|
52 |
+
bs = 128
|
53 |
+
elif "large" in model_name:
|
54 |
+
bs = 64
|
55 |
+
else:
|
56 |
+
bs = 32
|
57 |
+
|
58 |
+
if "A10" in device_name:
|
59 |
+
bs *= 2
|
60 |
+
|
61 |
+
if opt_level == "O4":
|
62 |
+
bs *= 2
|
63 |
+
|
64 |
+
return bs
|
65 |
+
|
66 |
+
|
67 |
+
def mean_pooling(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor):
|
68 |
+
"""
|
69 |
+
Mean pool the token embeddings.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
last_hidden_state (`tuple`):
|
73 |
+
The output of the model.
|
74 |
+
attention_mask (`torch.Tensor`):
|
75 |
+
The attention mask.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
`torch.Tensor`:
|
79 |
+
The mean pooled embeddings.
|
80 |
+
"""
|
81 |
+
input_mask_expanded = (
|
82 |
+
attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
83 |
+
)
|
84 |
+
return torch.sum(last_hidden_state * input_mask_expanded, 1) / torch.clamp(
|
85 |
+
input_mask_expanded.sum(1), min=1e-9
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def get_model_and_tokenizer(model_name: str, optimization_level: str, progress):
|
90 |
+
"""
|
91 |
+
Load the model and tokenizer from the HuggingFace Hub.
|
92 |
+
|
93 |
+
If the model is not already optimized, optimize it and save it to the local directory.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
model_name (`str`):
|
97 |
+
The name of the model to load.
|
98 |
+
optimization_level (`str`):
|
99 |
+
The optimization level to use. Should be one of `"O2"`, `"O3"`, or `"O4"`.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
model (`ORTModelForFeatureExtraction`):
|
103 |
+
The optimized model.
|
104 |
+
tokenizer (`PreTrainedTokenizer`):
|
105 |
+
The tokenizer.
|
106 |
+
"""
|
107 |
+
optimized_model_name = f"model_optimized_{optimization_level}.onnx"
|
108 |
+
|
109 |
+
model_dir = Path(model_name.replace("/", "_"))
|
110 |
+
if not (model_dir / optimized_model_name).exists():
|
111 |
+
if progress is not None:
|
112 |
+
progress(0.2, "Downloading tokenizer...")
|
113 |
+
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
115 |
+
tokenizer.save_pretrained(model_dir)
|
116 |
+
|
117 |
+
if progress is not None:
|
118 |
+
progress(0.4, "Downloading model...")
|
119 |
+
|
120 |
+
model = ORTModelForFeatureExtraction.from_pretrained(model_name, export=True)
|
121 |
+
model.save_pretrained(model_dir)
|
122 |
+
|
123 |
+
optimizer = ORTOptimizer.from_pretrained(model)
|
124 |
+
optimization_config = opt_configs[optimization_level]
|
125 |
+
|
126 |
+
if progress is not None:
|
127 |
+
progress(0.6, "Optimizing model...")
|
128 |
+
|
129 |
+
optimizer.optimize(save_dir=model_dir, optimization_config=optimization_config)
|
130 |
+
Path(model_dir / "model_optimized.onnx").rename(
|
131 |
+
model_dir / optimized_model_name
|
132 |
+
)
|
133 |
+
|
134 |
+
else:
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
136 |
+
|
137 |
+
if progress is not None:
|
138 |
+
progress(0.8, "Loading optimized model and tokenizer...")
|
139 |
+
|
140 |
+
return (
|
141 |
+
ORTModelForFeatureExtraction.from_pretrained(
|
142 |
+
model_dir,
|
143 |
+
file_name=optimized_model_name,
|
144 |
+
provider="CUDAExecutionProvider",
|
145 |
+
),
|
146 |
+
tokenizer,
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
# def collate_fn(examples, tokenizer=None, padding=None, column_name="text"):
|
151 |
+
# try:
|
152 |
+
# keys = examples[0].keys()
|
153 |
+
# except KeyError:
|
154 |
+
# print(examples)
|
155 |
+
# else:
|
156 |
+
# batch = {k: [] for k in examples[0].keys()}
|
157 |
+
|
158 |
+
# tokenized = tokenizer(
|
159 |
+
# [x[column_name] for x in examples],
|
160 |
+
# truncation=True,
|
161 |
+
# padding=padding,
|
162 |
+
# max_length=512,
|
163 |
+
# return_tensors="pt"
|
164 |
+
# )
|
165 |
+
|
166 |
+
# tokenized[column_name] = [x[column_name] for x in examples]
|
167 |
+
|
168 |
+
# return tokenized
|
169 |
+
|
170 |
+
|
171 |
+
@torch.inference_mode()
|
172 |
+
def batch_embed(
|
173 |
+
ds: datasets.IterableDataset,
|
174 |
+
model: ORTModelForFeatureExtraction,
|
175 |
+
tokenizer: PreTrainedTokenizer,
|
176 |
+
model_name: str,
|
177 |
+
column_name: str,
|
178 |
+
new_dataset_id: str,
|
179 |
+
opt_level: str,
|
180 |
+
upload_batch_size: int = 10_000,
|
181 |
+
map_batch_size: int = 2000,
|
182 |
+
num2skip: int = 0,
|
183 |
+
num2embed: int = -1,
|
184 |
+
progress=None,
|
185 |
+
):
|
186 |
+
"""
|
187 |
+
Run the model on the dataset and upload the embeddings to the hub.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
ds (`datasets.Dataset`):
|
191 |
+
dataset to embed. From `load_hf_dataset`
|
192 |
+
model (`ORTModelForFeatureExtraction`):
|
193 |
+
model to use for embedding. From `get_model_and_tokenizer`
|
194 |
+
tokenizer (`AutoTokenizer`):
|
195 |
+
tokenizer to use for embedding. From `get_model_and_tokenizer`
|
196 |
+
model_name (`str`):
|
197 |
+
name of the model to use. Used to determine batch size.
|
198 |
+
column_name (`str`):
|
199 |
+
column name to use for embedding. Default option in gradio app is `text`
|
200 |
+
new_dataset_id (`str`):
|
201 |
+
id of the new dataset to create. Should include username or organization.
|
202 |
+
e.g. nbroad/new-embeddings
|
203 |
+
opt_level (`str`):
|
204 |
+
optimization level to use. Should be one of `O2`, `O3`, `O4`
|
205 |
+
See here for more details on optimization levels:
|
206 |
+
https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration
|
207 |
+
upload_batch_size (`int`, *optional*, defaults to `10_000`):
|
208 |
+
number of embeddings to upload at once. Defaults to 10,000.
|
209 |
+
map_batch_size (`int`, *optional*, defaults to `2000`):
|
210 |
+
number of examples to tokenize at once. Defaults to 2000.
|
211 |
+
num2skip (`int`, *optional*, defaults to `0`):
|
212 |
+
number of examples to skip. Defaults to 0.
|
213 |
+
num2embed (`int`, *optional*, defaults to `-1`):
|
214 |
+
number of examples to embed. Defaults to -1, which means all examples.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
current_count (`int`):
|
218 |
+
number of examples embedded so far
|
219 |
+
time_taken (`float`):
|
220 |
+
time taken to embed the examples in seconds
|
221 |
+
|
222 |
+
"""
|
223 |
+
|
224 |
+
api = HfApi(
|
225 |
+
token=os.environ["HF_TOKEN"],
|
226 |
+
)
|
227 |
+
|
228 |
+
username = api.whoami()["name"]
|
229 |
+
|
230 |
+
if "/" not in new_dataset_id:
|
231 |
+
new_dataset_id = username + "/" + new_dataset_id
|
232 |
+
|
233 |
+
repo = init_git_repo(new_dataset_id)
|
234 |
+
|
235 |
+
embeds = []
|
236 |
+
texts = []
|
237 |
+
|
238 |
+
# current count keeps track of how many have been embedded in total
|
239 |
+
current_count = num2skip
|
240 |
+
|
241 |
+
# last_count keeps track of how many had been embedded since last push
|
242 |
+
last_count = current_count
|
243 |
+
|
244 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
245 |
+
|
246 |
+
inference_bs = get_batch_size(torch.cuda.get_device_name(0), model_name, opt_level)
|
247 |
+
|
248 |
+
start_time = time.time()
|
249 |
+
|
250 |
+
collator = DataCollatorWithPadding(
|
251 |
+
tokenizer, padding=True, max_length=512, pad_to_multiple_of=16
|
252 |
+
)
|
253 |
+
|
254 |
+
dl = DataLoader(
|
255 |
+
ds,
|
256 |
+
batch_size=inference_bs,
|
257 |
+
shuffle=False,
|
258 |
+
num_workers=2,
|
259 |
+
pin_memory=True,
|
260 |
+
drop_last=False,
|
261 |
+
collate_fn=collator,
|
262 |
+
)
|
263 |
+
|
264 |
+
for batch in dl:
|
265 |
+
ids = batch["input_ids"].to(device)
|
266 |
+
mask = batch["attention_mask"].to(device)
|
267 |
+
|
268 |
+
t_ids = torch.zeros_like(ids)
|
269 |
+
|
270 |
+
outputs = model(input_ids=ids, attention_mask=mask, token_type_ids=t_ids)
|
271 |
+
|
272 |
+
embeds.extend(mean_pooling(outputs[0], mask).cpu().tolist())
|
273 |
+
texts.extend(batch[column_name])
|
274 |
+
|
275 |
+
current_count += ids.shape[0]
|
276 |
+
|
277 |
+
# Periodically upload to the hub
|
278 |
+
if len(embeds) > upload_batch_size:
|
279 |
+
push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
|
280 |
+
embeds = []
|
281 |
+
texts = []
|
282 |
+
last_count = current_count
|
283 |
+
|
284 |
+
# Provide updates
|
285 |
+
if progress is not None:
|
286 |
+
progress(
|
287 |
+
(current_count, None),
|
288 |
+
"Embedding docs...",
|
289 |
+
total=None,
|
290 |
+
unit="Docs Embedded",
|
291 |
+
)
|
292 |
+
|
293 |
+
time_taken = time.time() - start_time
|
294 |
+
|
295 |
+
# If there are any remaining embeddings, upload them
|
296 |
+
if len(embeds) > 0:
|
297 |
+
push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
|
298 |
+
|
299 |
+
return current_count - num2skip, time_taken
|
300 |
+
|
301 |
+
|
302 |
+
def init_git_repo(repo_id: str):
|
303 |
+
"""
|
304 |
+
Initialize a git repo for the new dataset.
|
305 |
+
|
306 |
+
***Removes existing local folder if exists***
|
307 |
+
|
308 |
+
Args:
|
309 |
+
repo_id (`str`):
|
310 |
+
id of the new dataset to create. Should include username or organization.
|
311 |
+
e.g. nbroad/new-embeddings
|
312 |
+
"""
|
313 |
+
local_dir = repo_id.replace("/", "_")
|
314 |
+
|
315 |
+
create_repo(
|
316 |
+
repo_id,
|
317 |
+
repo_type="dataset",
|
318 |
+
token=os.environ["HF_TOKEN"],
|
319 |
+
private=True,
|
320 |
+
exist_ok=True,
|
321 |
+
)
|
322 |
+
try:
|
323 |
+
repo = Repository(
|
324 |
+
local_dir=local_dir,
|
325 |
+
clone_from=repo_id,
|
326 |
+
repo_type="dataset",
|
327 |
+
token=os.environ["HF_TOKEN"],
|
328 |
+
skip_lfs_files=True,
|
329 |
+
)
|
330 |
+
except EnvironmentError:
|
331 |
+
shutil.rmtree(local_dir)
|
332 |
+
repo = Repository(
|
333 |
+
local_dir=local_dir,
|
334 |
+
clone_from=repo_id,
|
335 |
+
repo_type="dataset",
|
336 |
+
token=os.environ["HF_TOKEN"],
|
337 |
+
skip_lfs_files=True,
|
338 |
+
)
|
339 |
+
|
340 |
+
if repo is not None:
|
341 |
+
repo.git_pull()
|
342 |
+
|
343 |
+
return repo
|
344 |
+
|
345 |
+
|
346 |
+
def push_to_repo(
|
347 |
+
repo_id: str,
|
348 |
+
last_count: int,
|
349 |
+
current_count: int,
|
350 |
+
embeds: List[List[float]],
|
351 |
+
texts: List[str],
|
352 |
+
api: HfApi,
|
353 |
+
):
|
354 |
+
"""
|
355 |
+
Push embeddings to the repo.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
repo_id (`str`):
|
359 |
+
id of the new dataset to create. Should include username or organization.
|
360 |
+
last_count (`int`):
|
361 |
+
last count of embeddings.
|
362 |
+
This is the number of embeddings that have already been pushed.
|
363 |
+
current_count (`int`):
|
364 |
+
current count of embeddings.
|
365 |
+
This is the number of embeddings that have been pushed after this batch.
|
366 |
+
embeds (`List[List[float]]`):
|
367 |
+
list of embeddings to push to the repo
|
368 |
+
texts (`List[str]`):
|
369 |
+
list of texts to push to the repo
|
370 |
+
api (`huggingface_hub.HfApi`):
|
371 |
+
api to use to push to the repo
|
372 |
+
"""
|
373 |
+
|
374 |
+
temp_ds = Dataset.from_dict(
|
375 |
+
{
|
376 |
+
"embedding": embeds,
|
377 |
+
"text": texts,
|
378 |
+
}
|
379 |
+
)
|
380 |
+
|
381 |
+
local_dir = repo_id.replace("/", "_")
|
382 |
+
|
383 |
+
data_dir = Path(local_dir) / "data"
|
384 |
+
data_dir.mkdir(exist_ok=True, parents=True)
|
385 |
+
|
386 |
+
# use zfill so sorting puts the files in order
|
387 |
+
filename = f"embeddings_{str(last_count).zfill(8)}_{current_count}.parquet"
|
388 |
+
filepath = str(data_dir / filename)
|
389 |
+
|
390 |
+
temp_ds.to_parquet(filepath)
|
391 |
+
|
392 |
+
files = sorted(list(data_dir.glob("*.parquet")))
|
393 |
+
|
394 |
+
api.upload_file(
|
395 |
+
path_or_fileobj=filepath,
|
396 |
+
path_in_repo=f"data/{filename}",
|
397 |
+
repo_id=repo_id,
|
398 |
+
repo_type="dataset",
|
399 |
+
run_as_future=True,
|
400 |
+
token=os.environ["HF_TOKEN"],
|
401 |
+
commit_message=f"Embedded examples {last_count} thru {current_count}",
|
402 |
+
)
|
403 |
+
|
404 |
+
# Delete old files
|
405 |
+
|
406 |
+
if len(files) > 4:
|
407 |
+
for file in files[:2]:
|
408 |
+
file.unlink()
|