import argparse import math import os import platform import subprocess import cv2 import numpy as np import torch from tqdm import tqdm import audio # from face_detect import face_rect from models import Wav2Lip from batch_face import RetinaFace from time import time parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') parser.add_argument('--checkpoint_path', type=str, help='Name of saved checkpoint to load weights from', required=True) parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True) parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True) parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', default='results/result_voice.mp4') parser.add_argument('--static', type=bool, help='If True, then use only first video frame for inference', default=False) parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False) parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least') parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128) parser.add_argument('--resize_factor', default=1, type=int, help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p') parser.add_argument('--out_height', default=720, type=int, help='Output video height. Best results are obtained at 480 or 720') parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' 'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' 'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') parser.add_argument('--rotate', default=False, action='store_true', help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.' 'Use if you get a flipped result, despite feeding a normal looking video') parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window') def get_smoothened_boxes(boxes, T): for i in range(len(boxes)): if i + T > len(boxes): window = boxes[len(boxes) - T:] else: window = boxes[i : i + T] boxes[i] = np.mean(window, axis=0) return boxes def face_detect(images): results = [] pady1, pady2, padx1, padx2 = args.pads s = time() for image, rect in zip(images, face_rect(images)): if rect is None: cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') y1 = max(0, rect[1] - pady1) y2 = min(image.shape[0], rect[3] + pady2) x1 = max(0, rect[0] - padx1) x2 = min(image.shape[1], rect[2] + padx2) results.append([x1, y1, x2, y2]) print('face detect time:', time() - s) boxes = np.array(results) if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5) results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] return results def datagen(frames, mels): img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] if args.box[0] == -1: if not args.static: face_det_results = face_detect(frames) # BGR2RGB for CNN face detection else: face_det_results = face_detect([frames[0]]) else: print('Using the specified bounding box instead of face detection...') y1, y2, x1, x2 = args.box face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] for i, m in enumerate(mels): idx = 0 if args.static else i%len(frames) frame_to_save = frames[idx].copy() face, coords = face_det_results[idx].copy() face = cv2.resize(face, (args.img_size, args.img_size)) img_batch.append(face) mel_batch.append(m) frame_batch.append(frame_to_save) coords_batch.append(coords) if len(img_batch) >= args.wav2lip_batch_size: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, args.img_size//2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) yield img_batch, mel_batch, frame_batch, coords_batch img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] if len(img_batch) > 0: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, args.img_size//2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) yield img_batch, mel_batch, frame_batch, coords_batch mel_step_size = 16 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} for inference.'.format(device)) def _load(checkpoint_path): if device == 'cuda': checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def load_model(path): model = Wav2Lip() print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) model = model.to(device) return model.eval() def main(): args.img_size = 96 if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: args.static = True if not os.path.isfile(args.face): raise ValueError('--face argument must be a valid path to video/image file') elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: full_frames = [cv2.imread(args.face)] fps = args.fps else: video_stream = cv2.VideoCapture(args.face) fps = video_stream.get(cv2.CAP_PROP_FPS) print('Reading video frames...') full_frames = [] while 1: still_reading, frame = video_stream.read() if not still_reading: video_stream.release() break aspect_ratio = frame.shape[1] / frame.shape[0] frame = cv2.resize(frame, (int(args.out_height * aspect_ratio), args.out_height)) # if args.resize_factor > 1: # frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor)) if args.rotate: frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) y1, y2, x1, x2 = args.crop if x2 == -1: x2 = frame.shape[1] if y2 == -1: y2 = frame.shape[0] frame = frame[y1:y2, x1:x2] full_frames.append(frame) print ("Number of frames available for inference: "+str(len(full_frames))) if not args.audio.endswith('.wav'): print('Extracting raw audio...') # command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav') # subprocess.call(command, shell=True) subprocess.check_call([ "ffmpeg", "-y", "-i", args.audio, "temp/temp.wav", ]) args.audio = 'temp/temp.wav' wav = audio.load_wav(args.audio, 16000) mel = audio.melspectrogram(wav) print(mel.shape) if np.isnan(mel.reshape(-1)).sum() > 0: raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') mel_chunks = [] mel_idx_multiplier = 80./fps i = 0 while 1: start_idx = int(i * mel_idx_multiplier) if start_idx + mel_step_size > len(mel[0]): mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) break mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) i += 1 print("Length of mel chunks: {}".format(len(mel_chunks))) full_frames = full_frames[:len(mel_chunks)] batch_size = args.wav2lip_batch_size gen = datagen(full_frames.copy(), mel_chunks) s = time() for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks))/batch_size)))): if i == 0: frame_h, frame_w = full_frames[0].shape[:-1] out = cv2.VideoWriter("./result.avi", cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) with torch.no_grad(): pred = model(mel_batch, img_batch) pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. for p, f, c in zip(pred, frames, coords): y1, y2, x1, x2 = c p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) f[y1:y2, x1:x2] = p out.write(f) out.release() print("wav2lip prediction time:", time() - s) subprocess.check_call([ "ffmpeg", "-y", # "-vsync", "0", "-hwaccel", "cuda", "-hwaccel_output_format", "cuda", "-i", "./result.avi", "-i", args.audio, # "-c:v", "h264_nvenc", args.outfile, ]) model = detector = detector_model = None def do_load(checkpoint_path): global model, detector, detector_model model = load_model(checkpoint_path) # SFDDetector.load_model(device) detector = RetinaFace(gpu_id=0, model_path="./Wav2Lip/checkpoints/mobilenet.pth", network="mobilenet") # detector = RetinaFace(gpu_id=0, model_path="checkpoints/resnet50.pth", network="resnet50") detector_model = detector.model print("Models loaded") face_batch_size = 64 * 8 def face_rect(images): num_batches = math.ceil(len(images) / face_batch_size) prev_ret = None for i in range(num_batches): batch = images[i * face_batch_size: (i + 1) * face_batch_size] all_faces = detector(batch) # return faces list of all images for faces in all_faces: if faces: box, landmarks, score = faces[0] prev_ret = tuple(map(int, box)) yield prev_ret if __name__ == '__main__': args = parser.parse_args() do_load(args.checkpoint_path) main()