Spaces:
Running
on
L40S
Running
on
L40S
import json | |
import torch | |
from torch.utils import data | |
import numpy as np | |
import librosa | |
import textgrid as tg | |
import os | |
import math | |
class BEAT2Dataset(data.Dataset): | |
def __init__(self, cfg, split): | |
data_meta_paths = cfg.data.meta_paths | |
vid_meta = [] | |
for data_meta_path in data_meta_paths: | |
vid_meta.extend(json.load(open(data_meta_path, "r"))) | |
self.vid_meta = [item for item in vid_meta if item.get("mode") == split] | |
self.mean = 0 #np.load(cfg.data.mean_path) if cfg.data.mean_path is not None else 0 | |
self.std = 1 #np.load(cfg.data.std_path) if cfg.data.std_path is not None else 1 | |
self.joint_mask = None #cfg.data.joint_mask if cfg.data.joint_mask is not None else None | |
self.data_list = self.vid_meta | |
# self.sample_frames = cfg.data.sample_frames | |
self.fps = cfg.data.pose_fps | |
self.audio_sr = cfg.data.audio_sr | |
self.use_text = False #cfg.data.use_text | |
def __len__(self): | |
return len(self.data_list) | |
def normalize(motion, mean, std): | |
return (motion - mean) / (std + 1e-7) | |
def inverse_normalize(motion, mean, std): | |
return motion * std + mean | |
def select_joints(motion, joint_mask): | |
return motion[:, joint_mask] | |
def unselect_joints(motion, joint_mask): | |
# for visualization | |
full_motion = np.zeros((motion.shape[0], joint_mask.shape[0])) | |
full_motion[:, joint_mask] = motion | |
def __getitem__(self, item): | |
data = self.data_list[item] | |
motion = np.load(os.path.join(data["video_path"], data["video_id"] + ".npy")) | |
sdx = data["start_idx"] | |
edx = data["end_idx"] | |
SMPLX_FPS = 30 | |
motion = motion[sdx:edx] | |
# audio, sr = librosa.load(os.path.join(data["audio_path"], data["video_id"] + ".wav")) | |
# audio = librosa.resample(audio, orig_sr=sr, target_sr=self.audio_sr) | |
audio = np.load(os.path.join(data["audio_path"], data["video_id"] + "_text.npz"), allow_pickle=True) | |
sdx_audio = math.floor(sdx * (1 / SMPLX_FPS * 50)) | |
edx_audio = sdx_audio + int((edx - sdx) * 50 / SMPLX_FPS) + 1 | |
cached_audio_low = audio["wav2vec2_low"][sdx_audio:edx_audio] | |
cached_audio_high = audio["wav2vec2_high"][sdx_audio:edx_audio] | |
bert_time_aligned = audio["bert_time_aligned"][sdx_audio:edx_audio] | |
# print(sdx_audio, edx_audio, cached_audio_low.shape) | |
# print("cached_audio_low:", cached_audio_low.shape, cached_audio_high.shape, bert_time_aligned.shape, motion.shape) | |
motion_tensor = torch.from_numpy(motion).float() # T x D | |
cached_audio_low = torch.from_numpy(cached_audio_low).float() | |
cached_audio_high = torch.from_numpy(cached_audio_high).float() | |
bert_time_aligned = torch.from_numpy(bert_time_aligned).float() | |
audio_wave, sr = librosa.load(os.path.join(data["audio_path"], data["video_id"] + ".wav")) | |
audio_wave = librosa.resample(audio_wave, orig_sr=sr, target_sr=self.audio_sr) | |
sdx_audio = sdx * int(1 / SMPLX_FPS * self.audio_sr) | |
edx_audio = edx * int(1 / SMPLX_FPS * self.audio_sr) | |
audio_wave = audio_wave[sdx_audio:edx_audio] | |
audio_tensor = torch.from_numpy(audio_wave).float() | |
return dict( | |
cached_rep15d=motion_tensor, | |
cached_audio_low=cached_audio_low, | |
cached_audio_high=cached_audio_high, | |
bert_time_aligned=bert_time_aligned, | |
audio_tensor=audio_tensor, | |
) |