Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
class Conv2d(nn.Module): | |
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.conv_block = nn.Sequential( | |
nn.Conv2d(cin, cout, kernel_size, stride, padding), | |
nn.BatchNorm2d(cout) | |
) | |
self.act = nn.ReLU() | |
self.residual = residual | |
def forward(self, x): | |
out = self.conv_block(x) | |
if self.residual: | |
out += x | |
return self.act(out) | |
class nonorm_Conv2d(nn.Module): | |
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.conv_block = nn.Sequential( | |
nn.Conv2d(cin, cout, kernel_size, stride, padding), | |
) | |
self.act = nn.LeakyReLU(0.01, inplace=True) | |
def forward(self, x): | |
out = self.conv_block(x) | |
return self.act(out) | |
class Conv2dTranspose(nn.Module): | |
def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.conv_block = nn.Sequential( | |
nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding), | |
nn.BatchNorm2d(cout) | |
) | |
self.act = nn.ReLU() | |
def forward(self, x): | |
out = self.conv_block(x) | |
return self.act(out) | |