TANGO / Wav2Lip /inference.py
H-Liu1997's picture
init
31f2f28
raw
history blame
11.7 kB
import argparse
import math
import os
import platform
import subprocess
import cv2
import numpy as np
import torch
from tqdm import tqdm
import audio
# from face_detect import face_rect
from models import Wav2Lip
from batch_face import RetinaFace
from time import time
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--checkpoint_path', type=str,
help='Name of saved checkpoint to load weights from', required=True)
parser.add_argument('--face', type=str,
help='Filepath of video/image that contains faces to use', required=True)
parser.add_argument('--audio', type=str,
help='Filepath of video/audio file to use as raw audio source', required=True)
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
default='results/result_voice.mp4')
parser.add_argument('--static', type=bool,
help='If True, then use only first video frame for inference', default=False)
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)',
default=25., required=False)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128)
parser.add_argument('--resize_factor', default=1, type=int,
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
parser.add_argument('--out_height', default=720, type=int,
help='Output video height. Best results are obtained at 480 or 720')
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
parser.add_argument('--rotate', default=False, action='store_true',
help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.'
'Use if you get a flipped result, despite feeding a normal looking video')
parser.add_argument('--nosmooth', default=False, action='store_true',
help='Prevent smoothing face detections over a short temporal window')
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
results = []
pady1, pady2, padx1, padx2 = args.pads
s = time()
for image, rect in zip(images, face_rect(images)):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
print('face detect time:', time() - s)
boxes = np.array(results)
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def datagen(frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if args.box[0] == -1:
if not args.static:
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = face_detect([frames[0]])
else:
print('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = args.box
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if args.static else i%len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
mel_step_size = 16
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
def main():
args.img_size = 96
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
args.static = True
if not os.path.isfile(args.face):
raise ValueError('--face argument must be a valid path to video/image file')
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(args.face)]
fps = args.fps
else:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames...')
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
aspect_ratio = frame.shape[1] / frame.shape[0]
frame = cv2.resize(frame, (int(args.out_height * aspect_ratio), args.out_height))
# if args.resize_factor > 1:
# frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor))
if args.rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = args.crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print ("Number of frames available for inference: "+str(len(full_frames)))
if not args.audio.endswith('.wav'):
print('Extracting raw audio...')
# command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav')
# subprocess.call(command, shell=True)
subprocess.check_call([
"ffmpeg", "-y",
"-i", args.audio,
"temp/temp.wav",
])
args.audio = 'temp/temp.wav'
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_chunks = []
mel_idx_multiplier = 80./fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("Length of mel chunks: {}".format(len(mel_chunks)))
full_frames = full_frames[:len(mel_chunks)]
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), mel_chunks)
s = time()
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter("./result.avi",
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
out.write(f)
out.release()
print("wav2lip prediction time:", time() - s)
subprocess.check_call([
"ffmpeg", "-y",
# "-vsync", "0", "-hwaccel", "cuda", "-hwaccel_output_format", "cuda",
"-i", "./result.avi",
"-i", args.audio,
# "-c:v", "h264_nvenc",
args.outfile,
])
model = detector = detector_model = None
def do_load(checkpoint_path):
global model, detector, detector_model
model = load_model(checkpoint_path)
# SFDDetector.load_model(device)
detector = RetinaFace(gpu_id=0, model_path="./Wav2Lip/checkpoints/mobilenet.pth", network="mobilenet")
# detector = RetinaFace(gpu_id=0, model_path="checkpoints/resnet50.pth", network="resnet50")
detector_model = detector.model
print("Models loaded")
face_batch_size = 64 * 8
def face_rect(images):
num_batches = math.ceil(len(images) / face_batch_size)
prev_ret = None
for i in range(num_batches):
batch = images[i * face_batch_size: (i + 1) * face_batch_size]
all_faces = detector(batch) # return faces list of all images
for faces in all_faces:
if faces:
box, landmarks, score = faces[0]
prev_ret = tuple(map(int, box))
yield prev_ret
if __name__ == '__main__':
args = parser.parse_args()
do_load(args.checkpoint_path)
main()