File size: 20,335 Bytes
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea6e65
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68c121
31f2f28
41a75ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f2f28
41a75ff
 
 
 
31f2f28
41a75ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f2f28
41a75ff
31f2f28
 
 
 
 
 
 
 
 
 
41a75ff
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ffb97
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ffb97
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea6e65
31f2f28
 
 
 
 
1ea6e65
 
 
 
31f2f28
1ea6e65
31f2f28
1ea6e65
 
31f2f28
1ea6e65
 
 
 
 
 
 
 
31f2f28
 
1ea6e65
 
31f2f28
1ea6e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f2f28
 
 
 
 
1ea6e65
 
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ffb97
31f2f28
 
 
 
41a75ff
 
 
 
 
 
 
 
 
 
 
 
31f2f28
 
41a75ff
28ffb97
31f2f28
 
 
28ffb97
 
31f2f28
 
28ffb97
31f2f28
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"""
input: json file with video, audio, motion paths
output: igraph object with nodes containing video, audio, motion, position, velocity, axis_angle, previous, next, frame, fps

preprocess:
1. assume you have a video for one speaker in folder, listed in 
    -- video_a.mp4
    -- video_b.mp4
    run process_video.py to extract frames and audio
"""

import os
import smplx
import torch
import numpy as np
import cv2
import librosa
import igraph
import json
import utils.rotation_conversions as rc
from moviepy.editor import VideoClip, AudioFileClip, VideoFileClip
from tqdm import tqdm
import imageio
import tempfile
import argparse


def get_motion_reps_tensor(motion_tensor, smplx_model, pose_fps=30, device='cuda'):
    bs, n, _ = motion_tensor.shape
    motion_tensor = motion_tensor.float().to(device)
    motion_tensor_reshaped = motion_tensor.reshape(bs * n, 165)
    
    output = smplx_model(
        betas=torch.zeros(bs * n, 300, device=device),
        transl=torch.zeros(bs * n, 3, device=device),
        expression=torch.zeros(bs * n, 100, device=device),
        jaw_pose=torch.zeros(bs * n, 3, device=device),
        global_orient=torch.zeros(bs * n, 3, device=device),
        body_pose=motion_tensor_reshaped[:, 3:21 * 3 + 3],
        left_hand_pose=motion_tensor_reshaped[:, 25 * 3:40 * 3],
        right_hand_pose=motion_tensor_reshaped[:, 40 * 3:55 * 3],
        return_joints=True,
        leye_pose=torch.zeros(bs * n, 3, device=device),
        reye_pose=torch.zeros(bs * n, 3, device=device),
    )
    
    joints = output['joints'].reshape(bs, n, 127, 3)[:, :, :55, :]
    dt = 1 / pose_fps
    init_vel = (joints[:, 1:2] - joints[:, 0:1]) / dt
    middle_vel = (joints[:, 2:] - joints[:, :-2]) / (2 * dt)
    final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
    vel = torch.cat([init_vel, middle_vel, final_vel], dim=1)
    
    position = joints
    rot_matrices = rc.axis_angle_to_matrix(motion_tensor.reshape(bs, n, 55, 3))
    rot6d = rc.matrix_to_rotation_6d(rot_matrices).reshape(bs, n, 55, 6)

    init_vel_ang = (motion_tensor[:, 1:2] - motion_tensor[:, 0:1]) / dt
    middle_vel_ang = (motion_tensor[:, 2:] - motion_tensor[:, :-2]) / (2 * dt)
    final_vel_ang = (motion_tensor[:, -1:] - motion_tensor[:, -2:-1]) / dt
    angular_velocity = torch.cat([init_vel_ang, middle_vel_ang, final_vel_ang], dim=1).reshape(bs, n, 55, 3)

    rep15d = torch.cat([position, vel, rot6d, angular_velocity], dim=3).reshape(bs, n, 55 * 15)
    
    return {
        "position": position,
        "velocity": vel,
        "rotation": rot6d,
        "axis_angle": motion_tensor,
        "angular_velocity": angular_velocity,
        "rep15d": rep15d,
    }



def get_motion_reps(motion, smplx_model, pose_fps=30):
    gt_motion_tensor = motion["poses"]
    n = gt_motion_tensor.shape[0]
    bs = 1
    gt_motion_tensor = torch.from_numpy(gt_motion_tensor).float().to(device).unsqueeze(0)
    gt_motion_tensor_reshaped = gt_motion_tensor.reshape(bs * n, 165)
    output = smplx_model(
        betas=torch.zeros(bs * n, 300).to(device),
        transl=torch.zeros(bs * n, 3).to(device),
        expression=torch.zeros(bs * n, 100).to(device),
        jaw_pose=torch.zeros(bs * n, 3).to(device),
        global_orient=torch.zeros(bs * n, 3).to(device),
        body_pose=gt_motion_tensor_reshaped[:, 3:21 * 3 + 3],
        left_hand_pose=gt_motion_tensor_reshaped[:, 25 * 3:40 * 3],
        right_hand_pose=gt_motion_tensor_reshaped[:, 40 * 3:55 * 3],
        return_joints=True,
        leye_pose=torch.zeros(bs * n, 3).to(device),
        reye_pose=torch.zeros(bs * n, 3).to(device),
    )
    joints = output["joints"].detach().cpu().numpy().reshape(n, 127, 3)[:, :55, :]
    dt = 1 / pose_fps
    init_vel = (joints[1:2] - joints[0:1]) / dt
    middle_vel = (joints[2:] - joints[:-2]) / (2 * dt)
    final_vel = (joints[-1:] - joints[-2:-1]) / dt
    vel = np.concatenate([init_vel, middle_vel, final_vel], axis=0)
    position = joints
    rot_matrices = rc.axis_angle_to_matrix(gt_motion_tensor.reshape(1, n, 55, 3))[0]
    rot6d = rc.matrix_to_rotation_6d(rot_matrices).reshape(n, 55, 6).cpu().numpy()
    
    init_vel = (motion["poses"][1:2] - motion["poses"][0:1]) / dt
    middle_vel = (motion["poses"][2:] - motion["poses"][:-2]) / (2 * dt)
    final_vel = (motion["poses"][-1:] - motion["poses"][-2:-1]) / dt
    angular_velocity = np.concatenate([init_vel, middle_vel, final_vel], axis=0).reshape(n, 55, 3)

    rep15d = np.concatenate([
        position,
        vel,
        rot6d,
        angular_velocity],
        axis=2
    ).reshape(n, 55*15)
    return {
        "position": position,
        "velocity": vel,
        "rotation": rot6d,
        "axis_angle": motion["poses"],
        "angular_velocity": angular_velocity,
        "rep15d": rep15d,
        "trans": motion["trans"]
    }

def create_graph(json_path, smplx_model):
    fps = 30
    data_meta = json.load(open(json_path, "r"))
    graph = igraph.Graph(directed=True)
    global_i = 0
    for data_item in data_meta:
        video_path = os.path.join(data_item['video_path'], data_item['video_id'] + ".mp4")
        # audio_path = os.path.join(data_item['audio_path'], data_item['video_id'] +  ".wav")
        motion_path = os.path.join(data_item['motion_path'], data_item['video_id'] +  ".npz")
        video_id = data_item.get("video_id", "")
        motion = np.load(motion_path, allow_pickle=True)
        motion_reps = get_motion_reps(motion, smplx_model)
        position = motion_reps['position']
        velocity = motion_reps['velocity']
        trans = motion_reps['trans']
        axis_angle = motion_reps['axis_angle']
        # audio, sr = librosa.load(audio_path, sr=None)
        # audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
        all_frames = []
        reader = imageio.get_reader(video_path)
        all_frames = []
        for frame in reader:
            all_frames.append(frame)
        video_frames = np.array(all_frames)
        min_frames = min(len(video_frames), position.shape[0])
        position = position[:min_frames]
        velocity = velocity[:min_frames]
        video_frames = video_frames[:min_frames]
        # print(min_frames)
        for i in tqdm(range(min_frames)):
            if i == 0:
                previous = -1
                next_node = global_i + 1
            elif i == min_frames - 1:
                previous = global_i - 1
                next_node = -1
            else:
                previous = global_i - 1
                next_node = global_i + 1
            graph.add_vertex(
                idx=global_i,
                name=video_id,
                motion=motion_reps,
                position=position[i],
                velocity=velocity[i],
                axis_angle=axis_angle[i],
                trans=trans[i],
                # audio=audio[],
                video=video_frames[i],
                previous=previous,
                next=next_node,
                frame=i,
                fps=fps,
            )
            global_i += 1
    return graph

def create_edges(graph, threshold_edges):
    adaptive_length = [-4, -3, -2, -1, 1, 2, 3, 4]
    # print()
    for i, node in enumerate(graph.vs):
        current_position = node['position']
        current_velocity = node['velocity']
        current_trans = node['trans']
        # print(current_position.shape, current_velocity.shape)
        avg_position = np.zeros(current_position.shape[0])
        avg_velocity = np.zeros(current_position.shape[0])
        avg_trans = 0
        count = 0
        for node_offset in adaptive_length:
            idx = i + node_offset
            if idx < 0 or idx >= len(graph.vs):
                continue
            if node_offset < 0:
              if graph.vs[idx]['next'] == -1:continue
            else:
              if graph.vs[idx]['previous'] == -1:continue
            # add check
            other_node = graph.vs[idx]
            other_position = other_node['position']
            other_velocity = other_node['velocity']
            other_trans = other_node['trans']
            # print(other_position.shape, other_velocity.shape)
            avg_position += np.linalg.norm(current_position - other_position, axis=1)
            avg_velocity += np.linalg.norm(current_velocity - other_velocity, axis=1)
            avg_trans += np.linalg.norm(current_trans - other_trans, axis=0)
            count += 1
        
        if count == 0:
            continue
        threshold_position = avg_position / count
        threshold_velocity = avg_velocity / count
        threshold_trans = avg_trans / count
        # print(threshold_position, threshold_velocity, threshold_trans)
        for j, other_node in enumerate(graph.vs):
            if i == j:
                continue
            if j == node['previous'] or j == node['next']:
                graph.add_edge(i, j, is_continue=1)
                continue
            other_position = other_node['position']
            other_velocity = other_node['velocity']
            other_trans = other_node['trans']
            position_similarity = np.linalg.norm(current_position - other_position, axis=1)
            velocity_similarity = np.linalg.norm(current_velocity - other_velocity, axis=1)
            trans_similarity = np.linalg.norm(current_trans - other_trans, axis=0)
            if trans_similarity < threshold_trans: 
                if np.sum(position_similarity < threshold_edges*threshold_position) >= 45 and np.sum(velocity_similarity < threshold_edges*threshold_velocity) >= 45:
                    graph.add_edge(i, j, is_continue=0)

    print(f"nodes: {len(graph.vs)}, edges: {len(graph.es)}")
    in_degrees = graph.indegree()
    out_degrees = graph.outdegree()
    avg_in_degree = sum(in_degrees) / len(in_degrees)
    avg_out_degree = sum(out_degrees) / len(out_degrees)
    print(f"Average In-degree: {avg_in_degree}")
    print(f"Average Out-degree: {avg_out_degree}")
    print(f"max in degree: {max(in_degrees)}, max out degree: {max(out_degrees)}")
    print(f"min in degree: {min(in_degrees)}, min out degree: {min(out_degrees)}")
  # igraph.plot(graph, target="/content/test.png", bbox=(1000, 1000), vertex_size=10)
    return graph

def random_walk(graph, walk_length, start_node=None):
    if start_node is None:
        start_node = np.random.choice(graph.vs)
    walk = [start_node]
    is_continue = [1]
    for _ in range(walk_length):
        current_node = walk[-1]
        neighbor_indices = graph.neighbors(current_node.index, mode='OUT')
        if not neighbor_indices:
            break
        next_idx = np.random.choice(neighbor_indices)
        edge_id = graph.get_eid(current_node.index, next_idx)
        is_cont = graph.es[edge_id]['is_continue']
        walk.append(graph.vs[next_idx])
        is_continue.append(is_cont)
    return walk, is_continue

import subprocess
def path_visualization(graph, path, is_continue, save_path, verbose_continue=False, audio_path=None, return_motion=False):
    all_frames = [node['video'] for node in path]
    average_dis_continue = 1 - sum(is_continue) / len(is_continue)
    if verbose_continue:
        print("average_dis_continue:", average_dis_continue)

    fps = graph.vs[0]['fps']
    duration = len(all_frames) / fps

    def make_frame(t):
        idx = min(int(t * fps), len(all_frames) - 1)
        return all_frames[idx]
    
    video_only_path = 'video_only.mp4'  # Temporary file
    video_clip = VideoClip(make_frame, duration=duration)
    video_clip.write_videofile(
        video_only_path,
        codec='libx264',
        fps=fps,
        audio=False
    )

    # Optionally, ensure audio and video durations match
    if audio_path is not None:
        audio_clip = AudioFileClip(audio_path)
        video_duration = video_clip.duration
        audio_duration = audio_clip.duration

        if audio_duration > video_duration:
            # Trim the audio
            trimmed_audio_path = 'trimmed_audio.aac'
            audio_clip = audio_clip.subclip(0, video_duration)
            audio_clip.write_audiofile(trimmed_audio_path)
            audio_input = trimmed_audio_path
        else:
            audio_input = audio_path

        # Use FFmpeg to combine video and audio
        ffmpeg_command = [
            'ffmpeg', '-y',
            '-i', video_only_path,
            '-i', audio_input,
            '-c:v', 'copy',
            '-c:a', 'aac',
            '-strict', 'experimental',
            save_path
        ]
        subprocess.check_call(ffmpeg_command)

        # Clean up temporary files if necessary
        os.remove(video_only_path)
        if audio_input != audio_path:
            os.remove(audio_input)
    
    if return_motion:
        all_motion = [node['axis_angle'] for node in path]
        all_motion = np.stack(all_motion, 0)
        return all_motion



def generate_transition_video(frame_start_path, frame_end_path, output_video_path):
    import subprocess
    import os

    # Define the path to your model and inference script
    model_path = "./frame-interpolation-pytorch/film_net_fp32.pt"
    inference_script = "./frame-interpolation-pytorch/inference.py"

    # Build the command to run the inference script
    command = [
        "python",
        inference_script,
        model_path,
        frame_start_path,
        frame_end_path,
        "--save_path", output_video_path,
        "--gpu",
        "--frames", "3",
        "--fps", "30"
    ]

    # Run the command
    try:
        subprocess.run(command, check=True)
        print(f"Generated transition video saved at {output_video_path}")
    except subprocess.CalledProcessError as e:
        print(f"Error occurred while generating transition video: {e}")


def path_visualization_v2(graph, path, is_continue, save_path, verbose_continue=False, audio_path=None, return_motion=False):
    '''
    this is for hugging face demo for fast interpolation. our paper use a diffusion based interpolation method
    '''
    all_frames = [node['video'] for node in path]
    average_dis_continue = 1 - sum(is_continue) / len(is_continue)
    if verbose_continue:
        print("average_dis_continue:", average_dis_continue)
    duration = len(all_frames) / graph.vs[0]['fps']
    
    # First loop: Confirm where blending is needed
    discontinuity_indices = []
    for i, cont in enumerate(is_continue):
        if cont == 0:
            discontinuity_indices.append(i)
    
    # Identify blending positions without overlapping
    blend_positions = []
    processed_frames = set()
    for i in discontinuity_indices:
        # Define the frames for blending: i-2 to i+2
        start_idx = i - 2
        end_idx = i + 2
        # Check index boundaries
        if start_idx < 0 or end_idx >= len(all_frames):
            continue  # Skip if indices are out of bounds
        # Check for overlapping frames
        overlap = any(idx in processed_frames for idx in range(i - 1, i + 2))
        if overlap:
            continue  # Skip if frames have been processed
        # Mark frames as processed
        processed_frames.update(range(i - 1, i + 2))
        blend_positions.append(i)
    
    # Second loop: Perform blending
    temp_dir = tempfile.mkdtemp(prefix='blending_frames_')
    for i in tqdm(blend_positions):
        start_frame_idx = i - 2
        end_frame_idx = i + 2
        frame_start = all_frames[start_frame_idx]
        frame_end = all_frames[end_frame_idx]
        frame_start_path = os.path.join(temp_dir, f'frame_{start_frame_idx}.png')
        frame_end_path = os.path.join(temp_dir, f'frame_{end_frame_idx}.png')
        # Save the start and end frames as images
        imageio.imwrite(frame_start_path, frame_start)
        imageio.imwrite(frame_end_path, frame_end)
        
        # Call FiLM API to generate video
        generated_video_path = os.path.join(temp_dir, f'generated_{start_frame_idx}_{end_frame_idx}.mp4')
        generate_transition_video(frame_start_path, frame_end_path, generated_video_path)
        
        # Read the generated video frames
        reader = imageio.get_reader(generated_video_path)
        generated_frames = [frame for frame in reader]
        reader.close()
        
        # Replace the middle three frames (i-1, i, i+1) in all_frames
        total_generated_frames = len(generated_frames)
        if total_generated_frames < 5:
            print(f"Generated video has insufficient frames ({total_generated_frames}). Skipping blending at position {i}.")
            continue
        middle_start = 1  # Start index for middle 3 frames
        middle_frames = generated_frames[middle_start:middle_start+3]
        for idx, frame_idx in enumerate(range(i - 1, i + 2)):
            all_frames[frame_idx] = middle_frames[idx]
    
    # Create the video clip
    def make_frame(t):
        idx = min(int(t * graph.vs[0]['fps']), len(all_frames) - 1)
        return all_frames[idx]
    
    video_clip = VideoClip(make_frame, duration=duration)
    if audio_path is not None:
        audio_clip = AudioFileClip(audio_path)
        video_clip = video_clip.set_audio(audio_clip)
    video_clip.write_videofile(save_path, codec='libx264', fps=graph.vs[0]['fps'], audio_codec='aac')
    
    if return_motion:
        all_motion = [node['axis_angle'] for node in path]
        all_motion = np.stack(all_motion, 0)
        return all_motion


def graph_pruning(graph):
    ascc = graph.clusters(mode="STRONG")
    lascc = ascc.giant()
    print(f"before nodes: {len(graph.vs)}, edges: {len(graph.es)}")
    print(f"after nodes: {len(lascc.vs)}, edges: {len(lascc.es)}")
    in_degrees = lascc.indegree()
    out_degrees = lascc.outdegree()
    avg_in_degree = sum(in_degrees) / len(in_degrees)
    avg_out_degree = sum(out_degrees) / len(out_degrees)
    print(f"Average In-degree: {avg_in_degree}")
    print(f"Average Out-degree: {avg_out_degree}")
    print(f"max in degree: {max(in_degrees)}, max out degree: {max(out_degrees)}")
    print(f"min in degree: {min(in_degrees)}, min out degree: {min(out_degrees)}")
    return lascc

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--json_save_path", type=str, default="")
    parser.add_argument("--graph_save_path", type=str, default="")
    parser.add_argument("--threshold", type=float, default=1.0)
    args = parser.parse_args()
    json_path = args.json_save_path
    graph_path = args.graph_save_path

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    smplx_model = smplx.create(
        "./emage/smplx_models/",
        model_type='smplx',
        gender='NEUTRAL_2020',
        use_face_contour=False,
        num_betas=300,
        num_expression_coeffs=100,
        ext='npz',
        use_pca=False,
    ).to(device).eval()

    # single_test
    # graph = create_graph('/content/drive/MyDrive/003_Codes/TANGO/datasets/data_json/show_oliver_test/Abortion_Laws_-_Last_Week_Tonight_with_John_Oliver_HBO-DRauXXz6t0Y.webm.json')
    graph = create_graph(json_path, smplx_model)
    graph = create_edges(graph, args.threshold)
    # pool_path = "/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/oliver_test/show-oliver-test.pkl"
    # graph = igraph.Graph.Read_Pickle(fname=pool_path)
    # graph = igraph.Graph.Read_Pickle(fname="/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/oliver_test/test.pkl")
    # walk, is_continue = random_walk(graph, 100)
    # motion = path_visualization(graph, walk, is_continue, "./test.mp4", audio_path=None, verbose_continue=True, return_motion=True)
    # print(motion.shape)
    save_graph = graph.write_pickle(fname=graph_path)
    # graph = graph_pruning(graph)

    # show-oliver
    # json_path = "/content/drive/MyDrive/003_Codes/TANGO/datasets/data_json/show_oliver_test/"
    # pre_node_path = "/content/drive/MyDrive/003_Codes/TANGO/datasets/cached_graph/show_oliver_test/"
    # for json_file in tqdm(os.listdir(json_path)):
    #     graph = create_graph(os.path.join(json_path, json_file))
    #     graph = create_edges(graph)
    #     if not len(graph.vs) >= 1500: 
    #         print(f"skip: {len(graph.vs)}", json_file)  
    #     graph.write_pickle(fname=os.path.join(pre_node_path, json_file.split(".")[0] + ".pkl"))
    #     print(f"Graph saved at {json_file.split('.')[0]}.pkl")