File size: 7,975 Bytes
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import random
import math
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
import torch.nn.functional as F

class Chomp1d(nn.Module):
    def __init__(self, chomp_size):
        super(Chomp1d, self).__init__()
        self.chomp_size = chomp_size

    def forward(self, x):
        return x[:, :, :-self.chomp_size].contiguous()


class TemporalBlock(nn.Module):
    def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
        super(TemporalBlock, self).__init__()
        self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp1 = Chomp1d(padding)
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(dropout)

        self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp2 = Chomp1d(padding)
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(dropout)

        self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
                                 self.conv2, self.chomp2, self.relu2, self.dropout2)
        self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
        self.relu = nn.ReLU()
        self.init_weights()

    def init_weights(self):
        self.conv1.weight.data.normal_(0, 0.01)
        self.conv2.weight.data.normal_(0, 0.01)
        if self.downsample is not None:
            self.downsample.weight.data.normal_(0, 0.01)

    def forward(self, x):
        out = self.net(x)
        res = x if self.downsample is None else self.downsample(x)
        return self.relu(out + res)


class TemporalConvNet(nn.Module):
    def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
        super(TemporalConvNet, self).__init__()
        layers = []
        num_levels = len(num_channels)
        for i in range(num_levels):
            dilation_size = 2 ** i
            in_channels = num_inputs if i == 0 else num_channels[i-1]
            out_channels = num_channels[i]
            layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
                                     padding=(kernel_size-1) * dilation_size, dropout=dropout)]

        self.network = nn.Sequential(*layers)

    def forward(self, x):
        return self.network(x)


class TextEncoderTCN(nn.Module):
    """ based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """
    def __init__(self, args, n_words=11195, embed_size=300, pre_trained_embedding=None,
                 kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False):
        super(TextEncoderTCN, self).__init__()
#         if word_cache:
#             self.embedding = None
#         else:
#             if pre_trained_embedding is not None:  # use pre-trained embedding (fasttext)
#                 #print(pre_trained_embedding.shape)
#                 assert pre_trained_embedding.shape[0] == n_words
#                 assert pre_trained_embedding.shape[1] == embed_size
#                 self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),
#                                                               freeze=args.freeze_wordembed)
#             else:
#                 self.embedding = nn.Embedding(n_words, embed_size)

        num_channels = [args.hidden_size] #* args.n_layer
        self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout)
        self.decoder = nn.Linear(num_channels[-1], args.word_f)
        self.drop = nn.Dropout(emb_dropout)
        #self.emb_dropout = emb_dropout
        self.init_weights()

    def init_weights(self):
        self.decoder.bias.data.fill_(0)
        self.decoder.weight.data.normal_(0, 0.01)

    def forward(self, input):
        #print(input.shape)
#         if self.embedding is None:
#             emb = self.drop(input)
#         else:
#             emb = self.drop(self.embedding(input))
        y = self.tcn(input.transpose(1, 2)).transpose(1, 2)
        y = self.decoder(y)
        return y, torch.max(y, dim=1)[0]









def reparameterize(mu, logvar):
    std = torch.exp(0.5 * logvar)
    eps = torch.randn_like(std)
    return mu + eps * std

def ConvNormRelu(in_channels, out_channels, downsample=False, padding=0, batchnorm=True):
    if not downsample:
        k = 3
        s = 1
    else:
        k = 4
        s = 2
    conv_block = nn.Conv1d(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
    norm_block = nn.BatchNorm1d(out_channels)
    if batchnorm:
        net = nn.Sequential(
            conv_block,
            norm_block,
            nn.LeakyReLU(0.2, True)
        )
    else:
        net = nn.Sequential(
            conv_block,
            nn.LeakyReLU(0.2, True)
        )
    return net

class BasicBlock(nn.Module):
    """ based on timm: https://github.com/rwightman/pytorch-image-models """
    def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64,
                 reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU,   norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
        super(BasicBlock, self).__init__()

        self.conv1 = nn.Conv1d(
            inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation,
            dilation=dilation, bias=True)
        self.bn1 = norm_layer(planes)
        self.act1 = act_layer(inplace=True)
        self.conv2 = nn.Conv1d(
            planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True)
        self.bn2 = norm_layer(planes)
        self.act2 = act_layer(inplace=True)
        if downsample is not None:
            self.downsample = nn.Sequential(
                nn.Conv1d(inplanes, planes,  stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True),
                norm_layer(planes), 
            )
        else: self.downsample=None
        self.stride = stride
        self.dilation = dilation
        self.drop_block = drop_block
        self.drop_path = drop_path

    def zero_init_last_bn(self):
        nn.init.zeros_(self.bn2.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        if self.downsample is not None:
            shortcut = self.downsample(shortcut)
        x += shortcut
        x = self.act2(x)
        return x

def init_weight(m):
    if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
        nn.init.xavier_normal_(m.weight)
        # m.bias.data.fill_(0.01)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)

def init_weight_skcnn(m):
    if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
        nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5))
        # m.bias.data.fill_(0.01)
        if m.bias is not None:
            #nn.init.constant_(m.bias, 0)
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
            bound = 1 / math.sqrt(fan_in)
            nn.init.uniform_(m.bias, -bound, bound)
            
class ResBlock(nn.Module):
    def __init__(self, channel):
        super(ResBlock, self).__init__()
        self.model = nn.Sequential(
            nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1),
        )

    def forward(self, x):
        residual = x
        out = self.model(x)
        out += residual
        return out