Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,826 Bytes
31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# Poseur: Direct Human Pose Regression with Transformers
> [**Poseur: Direct Human Pose Regression with Transformers**](https://arxiv.org/pdf/2201.07412.pdf),
> Weian Mao\*, Yongtao Ge\*, Chunhua Shen, Zhi Tian, Xinlong Wang, Zhibin Wang, Anton van den Hengel
> In: European Conference on Computer Vision (ECCV), 2022
> *arXiv preprint ([arXiv 2201.07412](https://arxiv.org/pdf/2201.07412))*
> (\* equal contribution)
# Introduction
This is a preview for Poseur, which currently including Poseur with R-50 backbone for both training and inference. More models with various backbones will be released soon. This project is bulit upon [MMPose](https://github.com/open-mmlab/mmpose) with commit ID [eeebc652842a9724259ed345c00112641d8ee06d](https://github.com/open-mmlab/mmpose/commit/eeebc652842a9724259ed345c00112641d8ee06d).
# Installation & Quick Start
1. Install following packages
```
pip install easydict einops
```
2. Follow the [MMPose instruction](mmpose_README.md) to install the project and set up the datasets (MS-COCO).
For training on COCO, run:
```
./tools/dist_train.sh \
configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_res50_coco_256x192.py 8 \
--work-dir work_dirs/poseur_res50_coco_256x192
```
For evaluating on COCO, run the following command lines:
```
wget https://cloudstor.aarnet.edu.au/plus/s/UXr1Dn9w6ja4fM9/download -O poseur_256x192_r50_6dec_coco.pth
./tools/dist_test.sh configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_res50_coco_256x192.py \
poseur_256x192_r50_6dec_coco.pth 4 \
--eval mAP \
--cfg-options model.filp_fuse_type=\'type2\'
```
For visualizing on COCO, run the following command lines:
```
python demo/top_down_img_demo.py \
configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_res50_coco_256x192.py \
poseur_256x192_r50_6dec_coco.pth \
--img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
--out-img-root vis_results_poseur
```
## Models
### COCO Keypoint Detection Results
Name | AP | AP.5| AP.75 |download
--- |:---:|:---:|:---:|:---:
[poseur_mobilenetv2_coco_256x192](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_mobilenetv2_coco_256x192.py)| 71.9 | 88.9 |78.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/L198TFFqwWYsSop/download)
[poseur_mobilenetv2_coco_256x192_12dec](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_mobilenetv2_coco_256x192_12dec.py)| 72.3 | 88.9 |78.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/sw0II7qSQDjJ88h/download)
[poseur_res50_coco_256x192](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_res50_coco_256x192.py)| 75.5 | 90.7 |82.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/UXr1Dn9w6ja4fM9/download)
[poseur_hrnet_w32_coco_256x192](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_hrnet_w32_coco_256x192.py)| 76.8 | 91.0 |83.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/xMvCnp5lb2MR7S4/download)
[poseur_hrnet_w48_coco_384x288](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_hrnet_w48_coco_384x288.py)| 78.7 | 91.6 |85.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/IGXy98TZlJYerNc/download)
[poseur_hrformer_tiny_coco_256x192_3dec](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_hrformer_tiny_coco_256x192_3dec.py)| 74.2 | 90.1 |81.4 | [model](https://cloudstor.aarnet.edu.au/plus/s/CpGYghZQX3mv32i/download)
[poseur_hrformer_small_coco_256x192_3dec](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_hrformer_small_coco_256x192_3dec.py)| 76.6 | 91.0 |83.4 | [model](https://cloudstor.aarnet.edu.au/plus/s/rK2s3fdrpeP9k6l/download)
[poseur_hrformer_big_coco_256x192](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_hrformer_big_coco_256x192.py)| 78.9 | 91.9 |85.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/34udjbTr9p9Aigo/download)
[poseur_hrformer_big_coco_384x288](configs/body/2d_kpt_sview_rgb_img/poseur/coco/poseur_hrformer_big_coco_384x288.py)| 79.6 | 92.1 |85.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/KST3aSAlGd8PJpQ/download)
*Disclaimer:*
- Due to the update of MMPose, the results are slightly different from our original paper.
- We use the official HRFormer implement from [here](https://github.com/HRNet/HRFormer/tree/main/pose), the implementation in mmpose has not been verified by us.
# Citations
Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.
```BibTeX
@inproceedings{mao2022poseur,
title={Poseur: Direct human pose regression with transformers},
author={Mao, Weian and Ge, Yongtao and Shen, Chunhua and Tian, Zhi and Wang, Xinlong and Wang, Zhibin and Hengel, Anton van den},
journal = {Proceedings of the European Conference on Computer Vision {(ECCV)}},
month = {October},
year={2022}
}
```
## License
For commercial use, please contact [Chunhua Shen](mailto:[email protected]). |