Spaces:
Running
on
L40S
Running
on
L40S
File size: 26,474 Bytes
31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import numpy as np
import cv2
import random
from config import cfg
import math
from utils.human_models import smpl_x, smpl
from utils.transforms import cam2pixel, transform_joint_to_other_db
from plyfile import PlyData, PlyElement
import torch
def load_img(path, order='RGB'):
img = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
if not isinstance(img, np.ndarray):
raise IOError("Fail to read %s" % path)
if order == 'RGB':
img = img[:, :, ::-1].copy()
img = img.astype(np.float32)
return img
def get_bbox(joint_img, joint_valid, extend_ratio=1.2):
x_img, y_img = joint_img[:, 0], joint_img[:, 1]
x_img = x_img[joint_valid == 1];
y_img = y_img[joint_valid == 1];
xmin = min(x_img);
ymin = min(y_img);
xmax = max(x_img);
ymax = max(y_img);
x_center = (xmin + xmax) / 2.;
width = xmax - xmin;
xmin = x_center - 0.5 * width * extend_ratio
xmax = x_center + 0.5 * width * extend_ratio
y_center = (ymin + ymax) / 2.;
height = ymax - ymin;
ymin = y_center - 0.5 * height * extend_ratio
ymax = y_center + 0.5 * height * extend_ratio
bbox = np.array([xmin, ymin, xmax - xmin, ymax - ymin]).astype(np.float32)
return bbox
def sanitize_bbox(bbox, img_width, img_height):
x, y, w, h = bbox
x1 = np.max((0, x))
y1 = np.max((0, y))
x2 = np.min((img_width - 1, x1 + np.max((0, w - 1))))
y2 = np.min((img_height - 1, y1 + np.max((0, h - 1))))
if w * h > 0 and x2 > x1 and y2 > y1:
bbox = np.array([x1, y1, x2 - x1, y2 - y1])
else:
bbox = None
return bbox
def process_bbox(bbox, img_width, img_height, ratio=1.25):
bbox = sanitize_bbox(bbox, img_width, img_height)
if bbox is None:
return bbox
# aspect ratio preserving bbox
w = bbox[2]
h = bbox[3]
c_x = bbox[0] + w / 2.
c_y = bbox[1] + h / 2.
aspect_ratio = cfg.input_img_shape[1] / cfg.input_img_shape[0]
if w > aspect_ratio * h:
h = w / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
bbox[2] = w * ratio
bbox[3] = h * ratio
bbox[0] = c_x - bbox[2] / 2.
bbox[1] = c_y - bbox[3] / 2.
bbox = bbox.astype(np.float32)
return bbox
def get_aug_config():
scale_factor = 0.25
rot_factor = 30
color_factor = 0.2
scale = np.clip(np.random.randn(), -1.0, 1.0) * scale_factor + 1.0
rot = np.clip(np.random.randn(), -2.0,
2.0) * rot_factor if random.random() <= 0.6 else 0
c_up = 1.0 + color_factor
c_low = 1.0 - color_factor
color_scale = np.array([random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)])
do_flip = random.random() <= 0.5
return scale, rot, color_scale, do_flip
def augmentation(img, bbox, data_split):
if getattr(cfg, 'no_aug', False):
scale, rot, color_scale, do_flip = 1.0, 0.0, np.array([1, 1, 1]), False
elif data_split == 'train':
scale, rot, color_scale, do_flip = get_aug_config()
else:
scale, rot, color_scale, do_flip = 1.0, 0.0, np.array([1, 1, 1]), False
img, trans, inv_trans = generate_patch_image(img, bbox, scale, rot, do_flip, cfg.input_img_shape)
img = np.clip(img * color_scale[None, None, :], 0, 255)
return img, trans, inv_trans, rot, do_flip
def generate_patch_image(cvimg, bbox, scale, rot, do_flip, out_shape):
img = cvimg.copy()
img_height, img_width, img_channels = img.shape
bb_c_x = float(bbox[0] + 0.5 * bbox[2])
bb_c_y = float(bbox[1] + 0.5 * bbox[3])
bb_width = float(bbox[2])
bb_height = float(bbox[3])
if do_flip:
img = img[:, ::-1, :]
bb_c_x = img_width - bb_c_x - 1
trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot)
img_patch = cv2.warpAffine(img, trans, (int(out_shape[1]), int(out_shape[0])), flags=cv2.INTER_LINEAR)
img_patch = img_patch.astype(np.float32)
inv_trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot,
inv=True)
return img_patch, trans, inv_trans
def rotate_2d(pt_2d, rot_rad):
x = pt_2d[0]
y = pt_2d[1]
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
xx = x * cs - y * sn
yy = x * sn + y * cs
return np.array([xx, yy], dtype=np.float32)
def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False):
# augment size with scale
src_w = src_width * scale
src_h = src_height * scale
src_center = np.array([c_x, c_y], dtype=np.float32)
# augment rotation
rot_rad = np.pi * rot / 180
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
dst_w = dst_width
dst_h = dst_height
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = src_center
src[1, :] = src_center + src_downdir
src[2, :] = src_center + src_rightdir
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = dst_center
dst[1, :] = dst_center + dst_downdir
dst[2, :] = dst_center + dst_rightdir
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
trans = trans.astype(np.float32)
return trans
def process_db_coord(joint_img, joint_cam, joint_valid, do_flip, img_shape, flip_pairs, img2bb_trans, rot,
src_joints_name, target_joints_name):
joint_img_original = joint_img.copy()
joint_img, joint_cam, joint_valid = joint_img.copy(), joint_cam.copy(), joint_valid.copy()
# flip augmentation
if do_flip:
joint_cam[:, 0] = -joint_cam[:, 0]
joint_img[:, 0] = img_shape[1] - 1 - joint_img[:, 0]
for pair in flip_pairs:
joint_img[pair[0], :], joint_img[pair[1], :] = joint_img[pair[1], :].copy(), joint_img[pair[0], :].copy()
joint_cam[pair[0], :], joint_cam[pair[1], :] = joint_cam[pair[1], :].copy(), joint_cam[pair[0], :].copy()
joint_valid[pair[0], :], joint_valid[pair[1], :] = joint_valid[pair[1], :].copy(), joint_valid[pair[0],
:].copy()
# 3D data rotation augmentation
rot_aug_mat = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1]], dtype=np.float32)
joint_cam = np.dot(rot_aug_mat, joint_cam.transpose(1, 0)).transpose(1, 0)
# affine transformation
joint_img_xy1 = np.concatenate((joint_img[:, :2], np.ones_like(joint_img[:, :1])), 1)
joint_img[:, :2] = np.dot(img2bb_trans, joint_img_xy1.transpose(1, 0)).transpose(1, 0)
joint_img[:, 0] = joint_img[:, 0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2]
joint_img[:, 1] = joint_img[:, 1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1]
# check truncation
joint_trunc = joint_valid * ((joint_img_original[:, 0] > 0) * (joint_img[:, 0] >= 0) * (joint_img[:, 0] < cfg.output_hm_shape[2]) * \
(joint_img_original[:, 1] > 0) *(joint_img[:, 1] >= 0) * (joint_img[:, 1] < cfg.output_hm_shape[1]) * \
(joint_img_original[:, 2] > 0) *(joint_img[:, 2] >= 0) * (joint_img[:, 2] < cfg.output_hm_shape[0])).reshape(-1,
1).astype(
np.float32)
# transform joints to target db joints
joint_img = transform_joint_to_other_db(joint_img, src_joints_name, target_joints_name)
joint_cam_wo_ra = transform_joint_to_other_db(joint_cam, src_joints_name, target_joints_name)
joint_valid = transform_joint_to_other_db(joint_valid, src_joints_name, target_joints_name)
joint_trunc = transform_joint_to_other_db(joint_trunc, src_joints_name, target_joints_name)
# root-alignment, for joint_cam input wo ra
joint_cam_ra = joint_cam_wo_ra.copy()
joint_cam_ra = joint_cam_ra - joint_cam_ra[smpl_x.root_joint_idx, None, :] # root-relative
joint_cam_ra[smpl_x.joint_part['lhand'], :] = joint_cam_ra[smpl_x.joint_part['lhand'], :] - joint_cam_ra[
smpl_x.lwrist_idx, None,
:] # left hand root-relative
joint_cam_ra[smpl_x.joint_part['rhand'], :] = joint_cam_ra[smpl_x.joint_part['rhand'], :] - joint_cam_ra[
smpl_x.rwrist_idx, None,
:] # right hand root-relative
joint_cam_ra[smpl_x.joint_part['face'], :] = joint_cam_ra[smpl_x.joint_part['face'], :] - joint_cam_ra[smpl_x.neck_idx,
None,
:] # face root-relative
return joint_img, joint_cam_wo_ra, joint_cam_ra, joint_valid, joint_trunc
def process_human_model_output(human_model_param, cam_param, do_flip, img_shape, img2bb_trans, rot, human_model_type, joint_img=None):
if human_model_type == 'smplx':
human_model = smpl_x
rotation_valid = np.ones((smpl_x.orig_joint_num), dtype=np.float32)
coord_valid = np.ones((smpl_x.joint_num), dtype=np.float32)
root_pose, body_pose, shape, trans = human_model_param['root_pose'], human_model_param['body_pose'], \
human_model_param['shape'], human_model_param['trans']
if 'lhand_pose' in human_model_param and human_model_param['lhand_valid']:
lhand_pose = human_model_param['lhand_pose']
else:
lhand_pose = np.zeros((3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32)
rotation_valid[smpl_x.orig_joint_part['lhand']] = 0
coord_valid[smpl_x.joint_part['lhand']] = 0
if 'rhand_pose' in human_model_param and human_model_param['rhand_valid']:
rhand_pose = human_model_param['rhand_pose']
else:
rhand_pose = np.zeros((3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32)
rotation_valid[smpl_x.orig_joint_part['rhand']] = 0
coord_valid[smpl_x.joint_part['rhand']] = 0
if 'jaw_pose' in human_model_param and 'expr' in human_model_param and human_model_param['face_valid']:
jaw_pose = human_model_param['jaw_pose']
expr = human_model_param['expr']
expr_valid = True
else:
jaw_pose = np.zeros((3), dtype=np.float32)
expr = np.zeros((smpl_x.expr_code_dim), dtype=np.float32)
rotation_valid[smpl_x.orig_joint_part['face']] = 0
coord_valid[smpl_x.joint_part['face']] = 0
expr_valid = False
if 'gender' in human_model_param:
gender = human_model_param['gender']
else:
gender = 'neutral'
root_pose = torch.FloatTensor(root_pose).view(1, 3) # (1,3)
body_pose = torch.FloatTensor(body_pose).view(-1, 3) # (21,3)
lhand_pose = torch.FloatTensor(lhand_pose).view(-1, 3) # (15,3)
rhand_pose = torch.FloatTensor(rhand_pose).view(-1, 3) # (15,3)
jaw_pose = torch.FloatTensor(jaw_pose).view(-1, 3) # (1,3)
shape = torch.FloatTensor(shape).view(1, -1) # SMPLX shape parameter
expr = torch.FloatTensor(expr).view(1, -1) # SMPLX expression parameter
trans = torch.FloatTensor(trans).view(1, -1) # translation vector
# apply camera extrinsic (rotation)
# merge root pose and camera rotation
if 'R' in cam_param:
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3)
root_pose = root_pose.numpy()
root_pose, _ = cv2.Rodrigues(root_pose)
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose))
root_pose = torch.from_numpy(root_pose).view(1, 3)
# get mesh and joint coordinates
zero_pose = torch.zeros((1, 3)).float() # eye poses
with torch.no_grad():
output = smpl_x.layer[gender](betas=shape, body_pose=body_pose.view(1, -1), global_orient=root_pose,
transl=trans, left_hand_pose=lhand_pose.view(1, -1),
right_hand_pose=rhand_pose.view(1, -1), jaw_pose=jaw_pose.view(1, -1),
leye_pose=zero_pose, reye_pose=zero_pose, expression=expr)
mesh_cam = output.vertices[0].numpy()
joint_cam = output.joints[0].numpy()[smpl_x.joint_idx, :]
# apply camera exrinsic (translation)
# compenstate rotation (translation from origin to root joint was not cancled)
if 'R' in cam_param and 't' in cam_param:
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'],
dtype=np.float32).reshape(1, 3)
root_cam = joint_cam[smpl_x.root_joint_idx, None, :]
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t
# concat root, body, two hands, and jaw pose
pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose))
# joint coordinates
if 'focal' not in cam_param or 'princpt' not in cam_param:
assert joint_img is not None
else:
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt'])
joint_img_original = joint_img.copy()
joint_cam = joint_cam - joint_cam[smpl_x.root_joint_idx, None, :] # root-relative
joint_cam[smpl_x.joint_part['lhand'], :] = joint_cam[smpl_x.joint_part['lhand'], :] - joint_cam[
smpl_x.lwrist_idx, None,
:] # left hand root-relative
joint_cam[smpl_x.joint_part['rhand'], :] = joint_cam[smpl_x.joint_part['rhand'], :] - joint_cam[
smpl_x.rwrist_idx, None,
:] # right hand root-relative
joint_cam[smpl_x.joint_part['face'], :] = joint_cam[smpl_x.joint_part['face'], :] - joint_cam[smpl_x.neck_idx,
None,
:] # face root-relative
joint_img[smpl_x.joint_part['body'], 2] = (joint_cam[smpl_x.joint_part['body'], 2].copy() / (
cfg.body_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # body depth discretize
joint_img[smpl_x.joint_part['lhand'], 2] = (joint_cam[smpl_x.joint_part['lhand'], 2].copy() / (
cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # left hand depth discretize
joint_img[smpl_x.joint_part['rhand'], 2] = (joint_cam[smpl_x.joint_part['rhand'], 2].copy() / (
cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # right hand depth discretize
joint_img[smpl_x.joint_part['face'], 2] = (joint_cam[smpl_x.joint_part['face'], 2].copy() / (
cfg.face_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # face depth discretize
elif human_model_type == 'smpl':
human_model = smpl
pose, shape, trans = human_model_param['pose'], human_model_param['shape'], human_model_param['trans']
if 'gender' in human_model_param:
gender = human_model_param['gender']
else:
gender = 'neutral'
pose = torch.FloatTensor(pose).view(-1, 3)
shape = torch.FloatTensor(shape).view(1, -1);
trans = torch.FloatTensor(trans).view(1, -1) # translation vector
# apply camera extrinsic (rotation)
# merge root pose and camera rotation
if 'R' in cam_param:
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3)
root_pose = pose[smpl.orig_root_joint_idx, :].numpy()
root_pose, _ = cv2.Rodrigues(root_pose)
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose))
pose[smpl.orig_root_joint_idx] = torch.from_numpy(root_pose).view(3)
# get mesh and joint coordinates
root_pose = pose[smpl.orig_root_joint_idx].view(1, 3)
body_pose = torch.cat((pose[:smpl.orig_root_joint_idx, :], pose[smpl.orig_root_joint_idx + 1:, :])).view(1, -1)
with torch.no_grad():
output = smpl.layer[gender](betas=shape, body_pose=body_pose, global_orient=root_pose, transl=trans)
mesh_cam = output.vertices[0].numpy()
joint_cam = np.dot(smpl.joint_regressor, mesh_cam)
# apply camera exrinsic (translation)
# compenstate rotation (translation from origin to root joint was not cancled)
if 'R' in cam_param and 't' in cam_param:
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'],
dtype=np.float32).reshape(1, 3)
root_cam = joint_cam[smpl.root_joint_idx, None, :]
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t
# joint coordinates
if 'focal' not in cam_param or 'princpt' not in cam_param:
assert joint_img is not None
else:
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt'])
joint_img_original = joint_img.copy()
joint_cam = joint_cam - joint_cam[smpl.root_joint_idx, None, :] # body root-relative
joint_img[:, 2] = (joint_cam[:, 2].copy() / (cfg.body_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[
0] # body depth discretize
elif human_model_type == 'mano':
human_model = mano
pose, shape, trans = human_model_param['pose'], human_model_param['shape'], human_model_param['trans']
hand_type = human_model_param['hand_type']
pose = torch.FloatTensor(pose).view(-1, 3)
shape = torch.FloatTensor(shape).view(1, -1);
trans = torch.FloatTensor(trans).view(1, -1) # translation vector
# apply camera extrinsic (rotation)
# merge root pose and camera rotation
if 'R' in cam_param:
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3)
root_pose = pose[mano.orig_root_joint_idx, :].numpy()
root_pose, _ = cv2.Rodrigues(root_pose)
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose))
pose[mano.orig_root_joint_idx] = torch.from_numpy(root_pose).view(3)
# get mesh and joint coordinates
root_pose = pose[mano.orig_root_joint_idx].view(1, 3)
hand_pose = torch.cat((pose[:mano.orig_root_joint_idx, :], pose[mano.orig_root_joint_idx + 1:, :])).view(1, -1)
with torch.no_grad():
output = mano.layer[hand_type](betas=shape, hand_pose=hand_pose, global_orient=root_pose, transl=trans)
mesh_cam = output.vertices[0].numpy()
joint_cam = np.dot(mano.joint_regressor, mesh_cam)
# apply camera exrinsic (translation)
# compenstate rotation (translation from origin to root joint was not cancled)
if 'R' in cam_param and 't' in cam_param:
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'],
dtype=np.float32).reshape(1, 3)
root_cam = joint_cam[mano.root_joint_idx, None, :]
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t
# joint coordinates
if 'focal' not in cam_param or 'princpt' not in cam_param:
assert joint_img is not None
else:
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt'])
joint_cam = joint_cam - joint_cam[mano.root_joint_idx, None, :] # hand root-relative
joint_img[:, 2] = (joint_cam[:, 2].copy() / (cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[
0] # hand depth discretize
mesh_cam_orig = mesh_cam.copy() # back-up the original one
## so far, data augmentations are not applied yet
## now, apply data augmentations
# image projection
if do_flip:
joint_cam[:, 0] = -joint_cam[:, 0]
joint_img[:, 0] = img_shape[1] - 1 - joint_img[:, 0]
for pair in human_model.flip_pairs:
joint_cam[pair[0], :], joint_cam[pair[1], :] = joint_cam[pair[1], :].copy(), joint_cam[pair[0], :].copy()
joint_img[pair[0], :], joint_img[pair[1], :] = joint_img[pair[1], :].copy(), joint_img[pair[0], :].copy()
if human_model_type == 'smplx':
coord_valid[pair[0]], coord_valid[pair[1]] = coord_valid[pair[1]].copy(), coord_valid[pair[0]].copy()
# x,y affine transform, root-relative depth
joint_img_xy1 = np.concatenate((joint_img[:, :2], np.ones_like(joint_img[:, 0:1])), 1)
joint_img[:, :2] = np.dot(img2bb_trans, joint_img_xy1.transpose(1, 0)).transpose(1, 0)[:, :2]
joint_img[:, 0] = joint_img[:, 0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2]
joint_img[:, 1] = joint_img[:, 1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1]
# check truncation
# TODO
joint_trunc = ((joint_img_original[:, 0] > 0) * (joint_img[:, 0] >= 0) * (joint_img[:, 0] < cfg.output_hm_shape[2]) * \
(joint_img_original[:, 1] > 0) * (joint_img[:, 1] >= 0) * (joint_img[:, 1] < cfg.output_hm_shape[1]) * \
(joint_img_original[:, 2] > 0) * (joint_img[:, 2] >= 0) * (joint_img[:, 2] < cfg.output_hm_shape[0])).reshape(-1, 1).astype(
np.float32)
# 3D data rotation augmentation
rot_aug_mat = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1]], dtype=np.float32)
# coordinate
joint_cam = np.dot(rot_aug_mat, joint_cam.transpose(1, 0)).transpose(1, 0)
# parameters
# flip pose parameter (axis-angle)
if do_flip:
for pair in human_model.orig_flip_pairs:
pose[pair[0], :], pose[pair[1], :] = pose[pair[1], :].clone(), pose[pair[0], :].clone()
if human_model_type == 'smplx':
rotation_valid[pair[0]], rotation_valid[pair[1]] = rotation_valid[pair[1]].copy(), rotation_valid[
pair[0]].copy()
pose[:, 1:3] *= -1 # multiply -1 to y and z axis of axis-angle
# rotate root pose
pose = pose.numpy()
root_pose = pose[human_model.orig_root_joint_idx, :]
root_pose, _ = cv2.Rodrigues(root_pose)
root_pose, _ = cv2.Rodrigues(np.dot(rot_aug_mat, root_pose))
pose[human_model.orig_root_joint_idx] = root_pose.reshape(3)
# change to mean shape if beta is too far from it
shape[(shape.abs() > 3).any(dim=1)] = 0.
shape = shape.numpy().reshape(-1)
# return results
if human_model_type == 'smplx':
pose = pose.reshape(-1)
expr = expr.numpy().reshape(-1)
return joint_img, joint_cam, joint_trunc, pose, shape, expr, rotation_valid, coord_valid, expr_valid, mesh_cam_orig
elif human_model_type == 'smpl':
pose = pose.reshape(-1)
return joint_img, joint_cam, joint_trunc, pose, shape, mesh_cam_orig
elif human_model_type == 'mano':
pose = pose.reshape(-1)
return joint_img, joint_cam, joint_trunc, pose, shape, mesh_cam_orig
def get_fitting_error_3D(db_joint, db_joint_from_fit, joint_valid):
# mask coordinate
db_joint = db_joint[np.tile(joint_valid, (1, 3)) == 1].reshape(-1, 3)
db_joint_from_fit = db_joint_from_fit[np.tile(joint_valid, (1, 3)) == 1].reshape(-1, 3)
db_joint_from_fit = db_joint_from_fit - np.mean(db_joint_from_fit, 0)[None, :] + np.mean(db_joint, 0)[None,
:] # translation alignment
error = np.sqrt(np.sum((db_joint - db_joint_from_fit) ** 2, 1)).mean()
return error
def load_obj(file_name):
v = []
obj_file = open(file_name)
for line in obj_file:
words = line.split(' ')
if words[0] == 'v':
x, y, z = float(words[1]), float(words[2]), float(words[3])
v.append(np.array([x, y, z]))
return np.stack(v)
def load_ply(file_name):
plydata = PlyData.read(file_name)
x = plydata['vertex']['x']
y = plydata['vertex']['y']
z = plydata['vertex']['z']
v = np.stack((x, y, z), 1)
return v
def resize_bbox(bbox, scale=1.2):
if isinstance(bbox, list):
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3]
else:
x1, y1, x2, y2 = bbox
x_center = (x1+x2)/2.0
y_center = (y1+y2)/2.0
x_size, y_size = x2-x1, y2-y1
x1_resize = x_center-x_size/2.0*scale
x2_resize = x_center+x_size/2.0*scale
y1_resize = y_center - y_size / 2.0 * scale
y2_resize = y_center + y_size / 2.0 * scale
bbox[0], bbox[1], bbox[2], bbox[3] = x1_resize, y1_resize, x2_resize, y2_resize
return bbox |