Spaces:
Running
on
L40S
Running
on
L40S
File size: 26,319 Bytes
31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "U1xFNFU58_2j"
},
"source": [
"## Goal: Make anyone speak anything (LipSync)\n",
"\n",
"* Github: https://github.com/Rudrabha/Wav2Lip\n",
"* Paper: https://arxiv.org/abs/2008.10010\n",
"*Original notebook: https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing\n",
"\n",
"\n",
"\n",
"\n",
"**Modded by: [justinjohn-03](https://github.com/justinjohn0306)**\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Qgo-oaI3JU2u"
},
"outputs": [],
"source": [
"#@title <h1>Step1: Setup Wav2Lip</h1>\n",
"#@markdown * Install dependency\n",
"#@markdown * Download pretrained model\n",
"from IPython.display import HTML, clear_output\n",
"!rm -rf /content/sample_data\n",
"!mkdir /content/sample_data\n",
"\n",
"!git clone https://github.com/justinjohn0306/Wav2Lip\n",
"\n",
"%cd /content/Wav2Lip\n",
"\n",
"#download the pretrained model\n",
"!wget 'https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth' -O 'checkpoints/wav2lip.pth'\n",
"!wget 'https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth' -O 'checkpoints/wav2lip_gan.pth'\n",
"!wget 'https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth' -O 'checkpoints/resnet50.pth'\n",
"!wget 'https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth' -O 'checkpoints/mobilenet.pth'\n",
"a = !pip install https://raw.githubusercontent.com/AwaleSajil/ghc/master/ghc-1.0-py3-none-any.whl\n",
"!pip install git+https://github.com/elliottzheng/batch-face.git@master\n",
"\n",
"!pip install ffmpeg-python mediapipe==0.8.11\n",
"\n",
"#this code for recording audio\n",
"\"\"\"\n",
"To write this piece of code I took inspiration/code from a lot of places.\n",
"It was late night, so I'm not sure how much I created or just copied o.O\n",
"Here are some of the possible references:\n",
"https://blog.addpipe.com/recording-audio-in-the-browser-using-pure-html5-and-minimal-javascript/\n",
"https://stackoverflow.com/a/18650249\n",
"https://hacks.mozilla.org/2014/06/easy-audio-capture-with-the-mediarecorder-api/\n",
"https://air.ghost.io/recording-to-an-audio-file-using-html5-and-js/\n",
"https://stackoverflow.com/a/49019356\n",
"\"\"\"\n",
"from IPython.display import HTML, Audio\n",
"from google.colab.output import eval_js\n",
"from base64 import b64decode\n",
"import numpy as np\n",
"from scipy.io.wavfile import read as wav_read\n",
"import io\n",
"import ffmpeg\n",
"\n",
"AUDIO_HTML = \"\"\"\n",
"<script>\n",
"var my_div = document.createElement(\"DIV\");\n",
"var my_p = document.createElement(\"P\");\n",
"var my_btn = document.createElement(\"BUTTON\");\n",
"var t = document.createTextNode(\"Press to start recording\");\n",
"\n",
"my_btn.appendChild(t);\n",
"//my_p.appendChild(my_btn);\n",
"my_div.appendChild(my_btn);\n",
"document.body.appendChild(my_div);\n",
"\n",
"var base64data = 0;\n",
"var reader;\n",
"var recorder, gumStream;\n",
"var recordButton = my_btn;\n",
"\n",
"var handleSuccess = function(stream) {\n",
" gumStream = stream;\n",
" var options = {\n",
" //bitsPerSecond: 8000, //chrome seems to ignore, always 48k\n",
" mimeType : 'audio/webm;codecs=opus'\n",
" //mimeType : 'audio/webm;codecs=pcm'\n",
" };\n",
" //recorder = new MediaRecorder(stream, options);\n",
" recorder = new MediaRecorder(stream);\n",
" recorder.ondataavailable = function(e) {\n",
" var url = URL.createObjectURL(e.data);\n",
" var preview = document.createElement('audio');\n",
" preview.controls = true;\n",
" preview.src = url;\n",
" document.body.appendChild(preview);\n",
"\n",
" reader = new FileReader();\n",
" reader.readAsDataURL(e.data);\n",
" reader.onloadend = function() {\n",
" base64data = reader.result;\n",
" //console.log(\"Inside FileReader:\" + base64data);\n",
" }\n",
" };\n",
" recorder.start();\n",
" };\n",
"\n",
"recordButton.innerText = \"Recording... press to stop\";\n",
"\n",
"navigator.mediaDevices.getUserMedia({audio: true}).then(handleSuccess);\n",
"\n",
"\n",
"function toggleRecording() {\n",
" if (recorder && recorder.state == \"recording\") {\n",
" recorder.stop();\n",
" gumStream.getAudioTracks()[0].stop();\n",
" recordButton.innerText = \"Saving the recording... pls wait!\"\n",
" }\n",
"}\n",
"\n",
"// https://stackoverflow.com/a/951057\n",
"function sleep(ms) {\n",
" return new Promise(resolve => setTimeout(resolve, ms));\n",
"}\n",
"\n",
"var data = new Promise(resolve=>{\n",
"//recordButton.addEventListener(\"click\", toggleRecording);\n",
"recordButton.onclick = ()=>{\n",
"toggleRecording()\n",
"\n",
"sleep(2000).then(() => {\n",
" // wait 2000ms for the data to be available...\n",
" // ideally this should use something like await...\n",
" //console.log(\"Inside data:\" + base64data)\n",
" resolve(base64data.toString())\n",
"\n",
"});\n",
"\n",
"}\n",
"});\n",
"\n",
"</script>\n",
"\"\"\"\n",
"\n",
"%cd /\n",
"from ghc.l_ghc_cf import l_ghc_cf\n",
"%cd content\n",
"\n",
"def get_audio():\n",
" display(HTML(AUDIO_HTML))\n",
" data = eval_js(\"data\")\n",
" binary = b64decode(data.split(',')[1])\n",
"\n",
" process = (ffmpeg\n",
" .input('pipe:0')\n",
" .output('pipe:1', format='wav')\n",
" .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True, quiet=True, overwrite_output=True)\n",
" )\n",
" output, err = process.communicate(input=binary)\n",
"\n",
" riff_chunk_size = len(output) - 8\n",
" # Break up the chunk size into four bytes, held in b.\n",
" q = riff_chunk_size\n",
" b = []\n",
" for i in range(4):\n",
" q, r = divmod(q, 256)\n",
" b.append(r)\n",
"\n",
" # Replace bytes 4:8 in proc.stdout with the actual size of the RIFF chunk.\n",
" riff = output[:4] + bytes(b) + output[8:]\n",
"\n",
" sr, audio = wav_read(io.BytesIO(riff))\n",
"\n",
" return audio, sr\n",
"\n",
"\n",
"from IPython.display import HTML\n",
"from base64 import b64encode\n",
"def showVideo(path):\n",
" mp4 = open(str(path),'rb').read()\n",
" data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
" return HTML(\"\"\"\n",
" <video width=700 controls>\n",
" <source src=\"%s\" type=\"video/mp4\">\n",
" </video>\n",
" \"\"\" % data_url)\n",
"\n",
"from IPython.display import clear_output\n",
"\n",
"clear_output()\n",
"print(\"All set and ready!\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SEdy6PWDXMRL"
},
"source": [
"# LipSync Youtube Video"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "QI4kcm8QEeGZ"
},
"outputs": [],
"source": [
"#@title STEP2: Select a Youtube Video\n",
"# Install yt-dlp\n",
"\n",
"import os\n",
"!pip install yt-dlp\n",
"\n",
"#@markdown ## Find YouTube video ID from URL\n",
"\n",
"#@markdown ___\n",
"\n",
"#@markdown Link format:\n",
"\n",
"#@markdown ``https://youtu.be/vAnWYLTdvfY`` β\n",
"\n",
"#@markdown ``https://www.youtube.com/watch?v=vAnWYLTdvfY`` βοΈ\n",
"\n",
"!rm -df youtube.mp4\n",
"\n",
"#@markdown ___\n",
"from urllib import parse as urlparse\n",
"YOUTUBE_URL = 'https://www.youtube.com/watch?v=vAnWYLTdvfY' #@param {type:\"string\"}\n",
"url_data = urlparse.urlparse(YOUTUBE_URL)\n",
"query = urlparse.parse_qs(url_data.query)\n",
"YOUTUBE_ID = query[\"v\"][0]\n",
"\n",
"\n",
"# remove previous input video\n",
"!rm -f /content/sample_data/input_vid.mp4\n",
"\n",
"\n",
"#@markdown ___\n",
"\n",
"#@markdown ### Trim the video (start, end) seconds\n",
"start = 35 #@param {type:\"integer\"}\n",
"end = 62 #@param {type:\"integer\"}\n",
"interval = end - start\n",
"\n",
"#@markdown <font color=\"orange\"> Note: ``the trimmed video must have face on all frames``\n",
"\n",
"# Download the YouTube video using yt-dlp\n",
"!yt-dlp -f 'bestvideo[ext=mp4]' --output \"youtube.%(ext)s\" https://www.youtube.com/watch?v=$YOUTUBE_ID\n",
"\n",
"# Cut the video using FFmpeg\n",
"!ffmpeg -y -i youtube.mp4 -ss {start} -t {interval} -async 1 /content/sample_data/input_vid.mp4\n",
"\n",
"# Preview the trimmed video\n",
"from IPython.display import HTML\n",
"from base64 import b64encode\n",
"mp4 = open('/content/sample_data/input_vid.mp4','rb').read()\n",
"data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
"HTML(f\"\"\"<video width=600 controls><source src=\"{data_url}\"></video>\"\"\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "zS_RAeh-IfZy"
},
"outputs": [],
"source": [
"#@title STEP3: Select Audio (Record, Upload from local drive or Gdrive)\n",
"import os\n",
"from IPython.display import Audio\n",
"from IPython.core.display import display\n",
"\n",
"upload_method = 'Upload' #@param ['Record', 'Upload', 'Custom Path']\n",
"\n",
"#remove previous input audio\n",
"if os.path.isfile('/content/sample_data/input_audio.wav'):\n",
" os.remove('/content/sample_data/input_audio.wav')\n",
"\n",
"def displayAudio():\n",
" display(Audio('/content/sample_data/input_audio.wav'))\n",
"\n",
"if upload_method == 'Record':\n",
" audio, sr = get_audio()\n",
" import scipy\n",
" scipy.io.wavfile.write('/content/sample_data/input_audio.wav', sr, audio)\n",
"\n",
"elif upload_method == 'Upload':\n",
" from google.colab import files\n",
" uploaded = files.upload()\n",
" for fn in uploaded.keys():\n",
" print('User uploaded file \"{name}\" with length {length} bytes'.format(\n",
" name=fn, length=len(uploaded[fn])))\n",
"\n",
" # Consider only the first file\n",
" PATH_TO_YOUR_AUDIO = str(list(uploaded.keys())[0])\n",
"\n",
" # Load audio with specified sampling rate\n",
" import librosa\n",
" audio, sr = librosa.load(PATH_TO_YOUR_AUDIO, sr=None)\n",
"\n",
" # Save audio with specified sampling rate\n",
" import soundfile as sf\n",
" sf.write('/content/sample_data/input_audio.wav', audio, sr, format='wav')\n",
"\n",
" clear_output()\n",
" displayAudio()\n",
"\n",
"elif upload_method == 'Custom Path':\n",
" from google.colab import drive\n",
" drive.mount('/content/drive')\n",
" #@markdown ``Add the full path to your audio on your Gdrive`` π\n",
" PATH_TO_YOUR_AUDIO = '/content/drive/MyDrive/test.wav' #@param {type:\"string\"}\n",
"\n",
" # Load audio with specified sampling rate\n",
" import librosa\n",
" audio, sr = librosa.load(PATH_TO_YOUR_AUDIO, sr=None)\n",
"\n",
" # Save audio with specified sampling rate\n",
" import soundfile as sf\n",
" sf.write('/content/sample_data/input_audio.wav', audio, sr, format='wav')\n",
"\n",
" clear_output()\n",
" displayAudio()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "BQPLXJ8L0gms"
},
"outputs": [],
"source": [
"#@title STEP4: Start Crunching and Preview Output\n",
"#@markdown <b>Note: Only change these, if you have to</b>\n",
"\n",
"%cd /content/Wav2Lip\n",
"\n",
"# Set up paths and variables for the output file\n",
"output_file_path = '/content/Wav2Lip/results/result_voice.mp4'\n",
"\n",
"# Delete existing output file before processing, if any\n",
"if os.path.exists(output_file_path):\n",
" os.remove(output_file_path)\n",
"\n",
"pad_top = 0#@param {type:\"integer\"}\n",
"pad_bottom = 10#@param {type:\"integer\"}\n",
"pad_left = 0#@param {type:\"integer\"}\n",
"pad_right = 0#@param {type:\"integer\"}\n",
"rescaleFactor = 1#@param {type:\"integer\"}\n",
"nosmooth = True #@param {type:\"boolean\"}\n",
"#@markdown ___\n",
"#@markdown Model selection:\n",
"use_hd_model = False #@param {type:\"boolean\"}\n",
"checkpoint_path = 'checkpoints/wav2lip.pth' if not use_hd_model else 'checkpoints/wav2lip_gan.pth'\n",
"\n",
"\n",
"if nosmooth == False:\n",
" !python inference.py --checkpoint_path $checkpoint_path --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor\n",
"else:\n",
" !python inference.py --checkpoint_path $checkpoint_path --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor --nosmooth\n",
"\n",
"#Preview output video\n",
"if os.path.exists(output_file_path):\n",
" clear_output()\n",
" print(\"Final Video Preview\")\n",
" print(\"Download this video from\", output_file_path)\n",
" showVideo(output_file_path)\n",
"else:\n",
" print(\"Processing failed. Output video not found.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vYxpPeie1CYL"
},
"source": [
"# LipSync on Your Video File"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "nDuM7tfZ1F0t"
},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"from google.colab import drive\n",
"from google.colab import files\n",
"from IPython.display import HTML, clear_output\n",
"from base64 import b64encode\n",
"import moviepy.editor as mp\n",
"\n",
"\n",
"def showVideo(file_path):\n",
" \"\"\"Function to display video in Colab\"\"\"\n",
" mp4 = open(file_path,'rb').read()\n",
" data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
" display(HTML(\"\"\"\n",
" <video controls width=600>\n",
" <source src=\"%s\" type=\"video/mp4\">\n",
" </video>\n",
" \"\"\" % data_url))\n",
"\n",
"def get_video_resolution(video_path):\n",
" \"\"\"Function to get the resolution of a video\"\"\"\n",
" import cv2\n",
" video = cv2.VideoCapture(video_path)\n",
" width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))\n",
" height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
" return (width, height)\n",
"\n",
"def resize_video(video_path, new_resolution):\n",
" \"\"\"Function to resize a video\"\"\"\n",
" import cv2\n",
" video = cv2.VideoCapture(video_path)\n",
" fourcc = int(video.get(cv2.CAP_PROP_FOURCC))\n",
" fps = video.get(cv2.CAP_PROP_FPS)\n",
" width, height = new_resolution\n",
" output_path = os.path.splitext(video_path)[0] + '_720p.mp4'\n",
" writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))\n",
" while True:\n",
" success, frame = video.read()\n",
" if not success:\n",
" break\n",
" resized_frame = cv2.resize(frame, new_resolution)\n",
" writer.write(resized_frame)\n",
" video.release()\n",
" writer.release()\n",
"\n",
"# Mount Google Drive if it's not already mounted\n",
"if not os.path.isdir(\"/content/drive/MyDrive\"):\n",
" drive.mount('/content/drive', force_remount=True)\n",
"\n",
"#@markdown ### Select an uploading method\n",
"upload_method = \"Upload\" #@param [\"Upload\", \"Custom Path\"]\n",
"\n",
"\n",
"# remove previous input video\n",
"if os.path.isfile('/content/sample_data/input_vid.mp4'):\n",
" os.remove('/content/sample_data/input_vid.mp4')\n",
"\n",
"if upload_method == \"Upload\":\n",
" uploaded = files.upload()\n",
" for filename in uploaded.keys():\n",
" os.rename(filename, '/content/sample_data/input_vid.mp4')\n",
" PATH_TO_YOUR_VIDEO = '/content/sample_data/input_vid.mp4'\n",
"\n",
"elif upload_method == 'Custom Path':\n",
" #@markdown ``Add the full path to your video on your Gdrive `` π\n",
" PATH_TO_YOUR_VIDEO = '/content/drive/MyDrive/test.mp4' #@param {type:\"string\"}\n",
" if not os.path.isfile(PATH_TO_YOUR_VIDEO):\n",
" print(\"ERROR: File not found!\")\n",
" raise SystemExit(0)\n",
"\n",
"#@markdown <font color=\"orange\">Notes:\n",
"\n",
"#@markdown <font color=\"orange\">. ``If your uploaded video is 1080p or higher resolution, this cell will resize it to 720p.``\n",
"\n",
"#@markdown <font color=\"orange\">. ``Do not upload videos longer than 60 seconds.``\n",
"\n",
"#@markdown ___\n",
"\n",
"video_duration = mp.VideoFileClip(PATH_TO_YOUR_VIDEO).duration\n",
"if video_duration > 60:\n",
" print(\"WARNING: Video duration exceeds 60 seconds. Please upload a shorter video.\")\n",
" raise SystemExit(0)\n",
"\n",
"video_resolution = get_video_resolution(PATH_TO_YOUR_VIDEO)\n",
"print(f\"Video resolution: {video_resolution}\")\n",
"if video_resolution[0] >= 1920 or video_resolution[1] >= 1080:\n",
" print(\"Resizing video to 720p...\")\n",
" os.system(f\"ffmpeg -i {PATH_TO_YOUR_VIDEO} -vf scale=1280:720 /content/sample_data/input_vid.mp4\")\n",
" PATH_TO_YOUR_VIDEO = \"/content/sample_data/input_vid.mp4\"\n",
" print(\"Video resized to 720p\")\n",
"else:\n",
" print(\"No resizing needed\")\n",
"\n",
"if upload_method == \"Upload\":\n",
" clear_output()\n",
" print(\"Input Video\")\n",
" showVideo(PATH_TO_YOUR_VIDEO)\n",
"else:\n",
" if os.path.isfile(PATH_TO_YOUR_VIDEO):\n",
" # Check if the source and destination files are the same\n",
" if PATH_TO_YOUR_VIDEO != \"/content/sample_data/input_vid.mp4\":\n",
" shutil.copyfile(PATH_TO_YOUR_VIDEO, \"/content/sample_data/input_vid.mp4\")\n",
" print(\"Video copied to destination.\")\n",
"\n",
" print(\"Input Video\")\n",
" # Display the video from the destination path\n",
" showVideo(\"/content/sample_data/input_vid.mp4\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "XgF4794r7sWK"
},
"outputs": [],
"source": [
"#@title STEP3: Select Audio (Record, Upload from local drive or Gdrive)\n",
"import os\n",
"from IPython.display import Audio\n",
"from IPython.core.display import display\n",
"\n",
"upload_method = 'Upload' #@param ['Record', 'Upload', 'Custom Path']\n",
"\n",
"#remove previous input audio\n",
"if os.path.isfile('/content/sample_data/input_audio.wav'):\n",
" os.remove('/content/sample_data/input_audio.wav')\n",
"\n",
"def displayAudio():\n",
" display(Audio('/content/sample_data/input_audio.wav'))\n",
"\n",
"if upload_method == 'Record':\n",
" audio, sr = get_audio()\n",
" import scipy\n",
" scipy.io.wavfile.write('/content/sample_data/input_audio.wav', sr, audio)\n",
"\n",
"elif upload_method == 'Upload':\n",
" from google.colab import files\n",
" uploaded = files.upload()\n",
" for fn in uploaded.keys():\n",
" print('User uploaded file \"{name}\" with length {length} bytes.'.format(\n",
" name=fn, length=len(uploaded[fn])))\n",
"\n",
" # Consider only the first file\n",
" PATH_TO_YOUR_AUDIO = str(list(uploaded.keys())[0])\n",
"\n",
" # Load audio with specified sampling rate\n",
" import librosa\n",
" audio, sr = librosa.load(PATH_TO_YOUR_AUDIO, sr=None)\n",
"\n",
" # Save audio with specified sampling rate\n",
" import soundfile as sf\n",
" sf.write('/content/sample_data/input_audio.wav', audio, sr, format='wav')\n",
"\n",
" clear_output()\n",
" displayAudio()\n",
"\n",
"else: # Custom Path\n",
" from google.colab import drive\n",
" drive.mount('/content/drive')\n",
" #@markdown ``Add the full path to your audio on your Gdrive`` π\n",
" PATH_TO_YOUR_AUDIO = '/content/drive/MyDrive/test.wav' #@param {type:\"string\"}\n",
"\n",
" # Load audio with specified sampling rate\n",
" import librosa\n",
" audio, sr = librosa.load(PATH_TO_YOUR_AUDIO, sr=None)\n",
"\n",
" # Save audio with specified sampling rate\n",
" import soundfile as sf\n",
" sf.write('/content/sample_data/input_audio.wav', audio, sr, format='wav')\n",
"\n",
" clear_output()\n",
" displayAudio()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ZgtO08V28ANf"
},
"outputs": [],
"source": [
"#@title STEP4: Start Crunching and Preview Output\n",
"#@markdown <b>Note: Only change these, if you have to</b>\n",
"\n",
"%cd /content/Wav2Lip\n",
"\n",
"# Set up paths and variables for the output file\n",
"output_file_path = '/content/Wav2Lip/results/result_voice.mp4'\n",
"\n",
"# Delete existing output file before processing, if any\n",
"if os.path.exists(output_file_path):\n",
" os.remove(output_file_path)\n",
"\n",
"pad_top = 0#@param {type:\"integer\"}\n",
"pad_bottom = 10#@param {type:\"integer\"}\n",
"pad_left = 0#@param {type:\"integer\"}\n",
"pad_right = 0#@param {type:\"integer\"}\n",
"rescaleFactor = 1#@param {type:\"integer\"}\n",
"nosmooth = True #@param {type:\"boolean\"}\n",
"#@markdown ___\n",
"#@markdown Model selection:\n",
"use_hd_model = False #@param {type:\"boolean\"}\n",
"checkpoint_path = 'checkpoints/wav2lip.pth' if not use_hd_model else 'checkpoints/wav2lip_gan.pth'\n",
"\n",
"\n",
"if nosmooth == False:\n",
" !python inference.py --checkpoint_path $checkpoint_path --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor\n",
"else:\n",
" !python inference.py --checkpoint_path $checkpoint_path --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor --nosmooth\n",
"\n",
"#Preview output video\n",
"if os.path.exists(output_file_path):\n",
" clear_output()\n",
" print(\"Final Video Preview\")\n",
" print(\"Download this video from\", output_file_path)\n",
" showVideo(output_file_path)\n",
"else:\n",
" print(\"Processing failed. Output video not found.\")"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"private_outputs": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|