File size: 35,712 Bytes
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea6e65
f9d911c
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea6e65
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b12aec
 
 
 
 
 
 
 
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d911c
1ea6e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f2f28
 
 
 
 
 
 
 
 
 
 
1ea6e65
 
 
 
 
 
 
 
 
 
 
31f2f28
 
 
 
 
 
 
 
1ea6e65
 
 
31f2f28
 
 
 
 
 
 
 
 
1ea6e65
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea6e65
 
 
 
31f2f28
 
 
 
 
 
1ea6e65
 
 
 
 
 
 
 
 
 
31f2f28
 
f9d911c
31f2f28
1ea6e65
31f2f28
 
 
 
 
 
1ea6e65
 
 
 
31f2f28
 
 
 
f9d911c
 
 
 
 
 
 
 
31f2f28
 
 
320051c
 
 
 
 
31f2f28
 
f4c7aff
18ce27f
f9d911c
18ce27f
4b12aec
 
3e5e0c1
31f2f28
 
 
 
 
 
 
 
 
 
 
 
320051c
 
31f2f28
320051c
31f2f28
 
 
 
4b12aec
31f2f28
 
 
 
 
 
1ea6e65
 
31f2f28
 
1ea6e65
 
 
31f2f28
18ce27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f2f28
 
 
18ce27f
320051c
 
 
18ce27f
 
 
 
 
 
320051c
31f2f28
 
1ea6e65
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164b79
f9d911c
 
1164b79
3e5e0c1
1ea6e65
31f2f28
 
 
603c46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f2f28
 
 
 
f9d911c
 
 
 
 
18ce27f
f9d911c
 
 
 
 
603c46e
 
 
 
 
f9d911c
 
 
 
 
 
 
603c46e
 
 
31f2f28
 
 
 
 
 
 
f9d911c
 
31f2f28
 
 
 
 
f9d911c
 
31f2f28
18ce27f
 
 
1ea6e65
603c46e
18ce27f
1ea6e65
18ce27f
1ea6e65
18ce27f
1ea6e65
18ce27f
1ea6e65
18ce27f
1ea6e65
18ce27f
 
603c46e
1ea6e65
18ce27f
31f2f28
 
 
 
18ce27f
31f2f28
 
 
 
 
 
1164b79
31f2f28
 
 
 
 
 
 
 
 
1164b79
31f2f28
18ce27f
31f2f28
 
 
 
 
 
 
4b12aec
31f2f28
 
 
f9d911c
 
 
 
 
 
 
 
 
 
1164b79
31f2f28
 
 
 
 
1ea6e65
31f2f28
f9d911c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import spaces
import os
# os.environ["XDG_RUNTIME_DIR"] = "/content"
# os.system("Xvfb :99 -ac &")
# os.environ["DISPLAY"] = ":99"
# os.environ["PYOPENGL_PLATFORM"] = "egl"
# os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import gradio as gr
import gc
import soundfile as sf
import shutil
import argparse
from moviepy.tools import verbose_print
from omegaconf import OmegaConf
import random
import numpy as np
import json 
import librosa
import emage.mertic
from datetime import datetime
from decord import VideoReader
from PIL import Image
import copy
import cv2
import subprocess

import importlib
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
import smplx
from moviepy.editor import VideoFileClip, AudioFileClip, ImageSequenceClip
import igraph

# import emage
import utils.rotation_conversions as rc
from utils.video_io import save_videos_from_pil
from utils.genextend_inference_utils import adjust_statistics_to_match_reference
from create_graph import path_visualization, graph_pruning, get_motion_reps_tensor, path_visualization_v2


def search_path_dp(graph, audio_low_np, audio_high_np, loop_penalty=0.1, top_k=1, search_mode="both", continue_penalty=0.1):
    T = audio_low_np.shape[0]  # Total time steps
    N = len(graph.vs)          # Total number of nodes in the graph

    # Initialize DP tables
    min_cost = [{} for _ in range(T)]  # min_cost[t][node_index] = list of tuples: (cost, prev_node_index, prev_tuple_index, non_continue_count, visited_nodes)

    # Initialize the first time step
    start_nodes = [v for v in graph.vs if v['previous'] is None or v['previous'] == -1]
    for node in start_nodes:
        node_index = node.index
        motion_low = node['motion_low']      # Shape: [C]
        motion_high = node['motion_high']    # Shape: [C]

        # Cost using cosine similarity
        if search_mode == "both":
            cost = 2 - (np.dot(audio_low_np[0], motion_low.T) + np.dot(audio_high_np[0], motion_high.T))
        elif search_mode == "high_level":
            cost = 1 - np.dot(audio_high_np[0], motion_high.T)
        elif search_mode == "low_level":
            cost = 1 - np.dot(audio_low_np[0], motion_low.T)

        visited_nodes = {node_index: 1}  # Initialize visit count as a dictionary

        min_cost[0][node_index] = [ (cost, None, None, 0, visited_nodes) ]  # Initialize with no predecessor and 0 non-continue count

    # DP over time steps
    for t in range(1, T):
        for node in graph.vs:
            node_index = node.index
            candidates = []

            # Incoming edges to the current node
            incoming_edges = graph.es.select(_to=node_index)
            for edge in incoming_edges:
                prev_node_index = edge.source
                edge_id = edge.index
                is_continue_edge = graph.es[edge_id]['is_continue']
                prev_node = graph.vs[prev_node_index]
                if prev_node_index in min_cost[t-1]:
                    for tuple_index, (prev_cost, _, _, prev_non_continue_count, prev_visited) in enumerate(min_cost[t-1][prev_node_index]):
                        # Loop punishment
                        if node_index in prev_visited:
                            loop_time = prev_visited[node_index]  # Get the count of previous visits
                            loop_cost = prev_cost + loop_penalty * np.exp(loop_time)  # Apply exponential penalty
                            new_visited = prev_visited.copy()
                            new_visited[node_index] = loop_time + 1  # Increment visit count
                        else:
                            loop_cost = prev_cost
                            new_visited = prev_visited.copy()
                            new_visited[node_index] = 1  # Initialize visit count for the new node

                        motion_low = node['motion_low']      # Shape: [C]
                        motion_high = node['motion_high']    # Shape: [C]

                        if search_mode == "both":
                            cost_increment = 2 - (np.dot(audio_low_np[t], motion_low.T) + np.dot(audio_high_np[t], motion_high.T))
                        elif search_mode == "high_level":
                            cost_increment = 1 - np.dot(audio_high_np[t], motion_high.T)
                        elif search_mode == "low_level":
                            cost_increment = 1 - np.dot(audio_low_np[t], motion_low.T)

                        # Check if the edge is "is_continue"
                        if not is_continue_edge:
                            non_continue_count = prev_non_continue_count + 1  # Increment the count of non-continue edges
                        else:
                            non_continue_count = prev_non_continue_count

                        # Apply the penalty based on the square of the number of non-continuous edges
                        continue_penalty_cost = continue_penalty * non_continue_count

                        total_cost = loop_cost + cost_increment + continue_penalty_cost

                        candidates.append( (total_cost, prev_node_index, tuple_index, non_continue_count, new_visited) )

            # Keep the top k candidates
            if candidates:
                # Sort candidates by total_cost
                candidates.sort(key=lambda x: x[0])
                # Keep top k
                min_cost[t][node_index] = candidates[:top_k]
            else:
                # No candidates, do nothing
                pass

    # Collect all possible end paths at time T-1
    end_candidates = []
    for node_index, tuples in min_cost[T-1].items():
        for tuple_index, (cost, _, _, _, _) in enumerate(tuples):
            end_candidates.append( (cost, node_index, tuple_index) )

    if not end_candidates:
        print("No valid path found.")
        return [], []

    # Sort end candidates by cost
    end_candidates.sort(key=lambda x: x[0])

    # Keep top k paths
    top_k_paths_info = end_candidates[:top_k]

    # Reconstruct the paths
    optimal_paths = []
    is_continue_lists = []
    for final_cost, node_index, tuple_index in top_k_paths_info:
        optimal_path_indices = []
        current_node_index = node_index
        current_tuple_index = tuple_index
        for t in range(T-1, -1, -1):
            optimal_path_indices.append(current_node_index)
            tuple_data = min_cost[t][current_node_index][current_tuple_index]
            _, prev_node_index, prev_tuple_index, _, _ = tuple_data
            current_node_index = prev_node_index
            current_tuple_index = prev_tuple_index
            if current_node_index is None:
                break  # Reached the start node
        optimal_path_indices = optimal_path_indices[::-1]  # Reverse to get correct order
        optimal_path = [graph.vs[idx] for idx in optimal_path_indices]
        optimal_paths.append(optimal_path)

        # Extract continuity information
        is_continue = []
        for i in range(len(optimal_path) - 1):
            edge_id = graph.get_eid(optimal_path[i].index, optimal_path[i + 1].index)
            is_cont = graph.es[edge_id]['is_continue']
            is_continue.append(is_cont)
        is_continue_lists.append(is_continue)

    print("Top {} Paths:".format(len(optimal_paths)))
    for i, path in enumerate(optimal_paths):
        path_indices = [node.index for node in path]
        print("Path {}: Cost: {}, Nodes: {}".format(i+1, top_k_paths_info[i][0], path_indices))

    return optimal_paths, is_continue_lists


def test_fn(model, device, iteration, candidate_json_path, test_path, cfg, audio_path, **kwargs):
    create_graph = kwargs["create_graph"]
    torch.set_grad_enabled(False)
    pool_path = candidate_json_path.replace("data_json", "cached_graph").replace(".json", ".pkl")
    graph = igraph.Graph.Read_Pickle(fname=pool_path)
    # print(len(graph.vs))

    save_dir = os.path.join(test_path, f"retrieved_motions_{iteration}")
    os.makedirs(save_dir, exist_ok=True)

    actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
    actual_model.eval()

    # with open(candidate_json_path, 'r') as f:
    #     candidate_data = json.load(f)
    all_motions = {}
    for i, node in enumerate(graph.vs):
        if all_motions.get(node["name"]) is None:
            all_motions[node["name"]] = [node["axis_angle"].reshape(-1)]
        else:
            all_motions[node["name"]].append(node["axis_angle"].reshape(-1))
    for k, v in all_motions.items():
        all_motions[k] = np.stack(v) # T, J*3
        # print(k, all_motions[k].shape)
    
    window_size = cfg.data.pose_length
    motion_high_all = []
    motion_low_all = []
    for k, v in all_motions.items():
        motion_tensor = torch.from_numpy(v).float().to(device).unsqueeze(0)
        _, t, _ = motion_tensor.shape
        
        if t >= window_size:
            num_chunks = t // window_size
            motion_high_list = []
            motion_low_list = []

            for i in range(num_chunks):
                start_idx = i * window_size
                end_idx = start_idx + window_size
                motion_slice = motion_tensor[:, start_idx:end_idx, :]
                
                motion_features = actual_model.get_motion_features(motion_slice)
                
                motion_low = motion_features["motion_low"].cpu().numpy()
                motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()

                motion_high_list.append(motion_high[0])
                motion_low_list.append(motion_low[0])

            remain_length = t % window_size
            if remain_length > 0:
                start_idx = t - window_size
                motion_slice = motion_tensor[:, start_idx:, :]

                motion_features = actual_model.get_motion_features(motion_slice)
                # motion_high = motion_features["motion_high_weight"].cpu().numpy()
                motion_low = motion_features["motion_low"].cpu().numpy()
                motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()

                motion_high_list.append(motion_high[0][-remain_length:])
                motion_low_list.append(motion_low[0][-remain_length:])

            motion_high_all.append(np.concatenate(motion_high_list, axis=0))
            motion_low_all.append(np.concatenate(motion_low_list, axis=0))

        else: # t < window_size:
            gap = window_size - t
            motion_slice = torch.cat([motion_tensor, torch.zeros((motion_tensor.shape[0], gap, motion_tensor.shape[2])).to(motion_tensor.device)], 1)
            motion_features = actual_model.get_motion_features(motion_slice)
            # motion_high = motion_features["motion_high_weight"].cpu().numpy()
            motion_low = motion_features["motion_low"].cpu().numpy()
            motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()

            motion_high_all.append(motion_high[0][:t])
            motion_low_all.append(motion_low[0][:t])
            
    motion_high_all = np.concatenate(motion_high_all, axis=0)
    motion_low_all = np.concatenate(motion_low_all, axis=0)
    # print(motion_high_all.shape, motion_low_all.shape, len(graph.vs))
    motion_low_all = motion_low_all / np.linalg.norm(motion_low_all, axis=1, keepdims=True)
    motion_high_all = motion_high_all / np.linalg.norm(motion_high_all, axis=1, keepdims=True)
    assert motion_high_all.shape[0] == len(graph.vs)
    assert motion_low_all.shape[0] == len(graph.vs)
    
    for i, node in enumerate(graph.vs):
        node["motion_high"] = motion_high_all[i]
        node["motion_low"] = motion_low_all[i]

    graph = graph_pruning(graph)
    # for gradio, use a subgraph
    if len(graph.vs) > 1800:
        gap = len(graph.vs) - 1800
        start_d = random.randint(0, 1800)
        graph.delete_vertices(range(start_d, start_d + gap))
    ascc_2 = graph.clusters(mode="STRONG")
    graph = ascc_2.giant()

    # drop the id of gt
    idx = 0
    audio_waveform, sr = librosa.load(audio_path)
    audio_waveform = librosa.resample(audio_waveform, orig_sr=sr, target_sr=cfg.data.audio_sr)
    audio_tensor = torch.from_numpy(audio_waveform).float().to(device).unsqueeze(0)
    
    target_length = audio_tensor.shape[1] // cfg.data.audio_sr * 30
    window_size = int(cfg.data.audio_sr * (cfg.data.pose_length / 30))
    _, t = audio_tensor.shape
    audio_low_list = []
    audio_high_list = []

    if t >= window_size:
        num_chunks = t // window_size
        # print(num_chunks, t % window_size)
        for i in range(num_chunks):
            start_idx = i * window_size
            end_idx = start_idx + window_size
            # print(start_idx, end_idx, window_size)
            audio_slice = audio_tensor[:, start_idx:end_idx]

            model_out_candidates = actual_model.get_audio_features(audio_slice)
            audio_low = model_out_candidates["audio_low"]
            # audio_high = model_out_candidates["audio_high_weight"]
            audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
            # print(audio_low.shape, audio_high.shape)

            audio_low = F.normalize(audio_low, dim=2)[0].cpu().numpy()
            audio_high = F.normalize(audio_high, dim=2)[0].cpu().numpy()

            audio_low_list.append(audio_low)
            audio_high_list.append(audio_high)
            # print(audio_low.shape, audio_high.shape)
            

        remain_length = t % window_size
        if remain_length > 1:
            start_idx = t - window_size
            audio_slice = audio_tensor[:, start_idx:]

            model_out_candidates = actual_model.get_audio_features(audio_slice)
            audio_low = model_out_candidates["audio_low"]
            # audio_high = model_out_candidates["audio_high_weight"]
            audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
            
            gap = target_length - np.concatenate(audio_low_list, axis=0).shape[1]
            audio_low = F.normalize(audio_low, dim=2)[0][-gap:].cpu().numpy()
            audio_high = F.normalize(audio_high, dim=2)[0][-gap:].cpu().numpy()
            
            # print(audio_low.shape, audio_high.shape)
            audio_low_list.append(audio_low)
            audio_high_list.append(audio_high)
    else:
        gap = window_size - t
        audio_slice = audio_tensor 
        model_out_candidates = actual_model.get_audio_features(audio_slice)
        audio_low = model_out_candidates["audio_low"]
        # audio_high = model_out_candidates["audio_high_weight"]
        audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
            
        gap = target_length - np.concatenate(audio_low_list, axis=0).shape[1]
        audio_low = F.normalize(audio_low, dim=2)[0][:gap].cpu().numpy()
        audio_high = F.normalize(audio_high, dim=2)[0][:gap].cpu().numpy()
        audio_low_list.append(audio_low)
        audio_high_list.append(audio_high)
    
    audio_low_all = np.concatenate(audio_low_list, axis=0)
    audio_high_all = np.concatenate(audio_high_list, axis=0)
    path_list, is_continue_list = search_path_dp(graph, audio_low_all, audio_high_all, top_k=1, search_mode="both")
    
    res_motion = []
    counter = 0
    for path, is_continue in zip(path_list, is_continue_list):
        if False:
            # time is limited if we create graph on hugging face, lets skip blending.
            res_motion_current = path_visualization(
              graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=audio_path, return_motion=True, verbose_continue=True
            )
            video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
        else:
            res_motion_current = path_visualization_v2(
              graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=None, return_motion=True, verbose_continue=True
            )
            video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
            video_reader = VideoReader(video_temp_path)
            video_np = []
            for i in range(len(video_reader)):
                if i == 0: continue
                video_frame = video_reader[i].asnumpy()
                video_np.append(Image.fromarray(video_frame))
            adjusted_video_pil = adjust_statistics_to_match_reference([video_np])
            save_videos_from_pil(adjusted_video_pil[0], os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), fps=graph.vs[0]['fps'], bitrate=2000000)

        audio_temp_path = audio_path
        lipsync_output_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
        checkpoint_path = './Wav2Lip/checkpoints/wav2lip_gan.pth'  # Update this path to your Wav2Lip checkpoint
        os.system(f'python ./Wav2Lip/inference.py --checkpoint_path {checkpoint_path} --face {video_temp_path} --audio {audio_temp_path} --outfile {lipsync_output_path} --nosmooth')

        res_motion.append(res_motion_current)
        np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
    
        start_node = path[1].index
        end_node = start_node + 100

    if create_graph:
        # time is limited if create graph, let us skip the second video
        result = [
        os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
        os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
        os.path.join(save_dir, f"audio_{idx}_retri_0.npz"),
        os.path.join(save_dir, f"audio_{idx}_retri_0.npz")
        ]
        return result

    print(f"delete gt-nodes {start_node}, {end_node}")
    nodes_to_delete = list(range(start_node, end_node))
    graph.delete_vertices(nodes_to_delete)
    graph = graph_pruning(graph)
    path_list, is_continue_list = search_path_dp(graph, audio_low_all, audio_high_all, top_k=1, search_mode="both")
    res_motion = []
    counter = 1
    for path, is_continue in zip(path_list, is_continue_list):
        res_motion_current = path_visualization_v2(
              graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=None, return_motion=True, verbose_continue=True
            )
        video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
        
        video_reader = VideoReader(video_temp_path)
        video_np = []
        for i in range(len(video_reader)):
            if i == 0: continue
            video_frame = video_reader[i].asnumpy()
            video_np.append(Image.fromarray(video_frame))
        adjusted_video_pil = adjust_statistics_to_match_reference([video_np])
        save_videos_from_pil(adjusted_video_pil[0], os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), fps=graph.vs[0]['fps'], bitrate=2000000)


        audio_temp_path = audio_path
        lipsync_output_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
        checkpoint_path = './Wav2Lip/checkpoints/wav2lip_gan.pth'  # Update this path to your Wav2Lip checkpoint
        os.system(f'python ./Wav2Lip/inference.py --checkpoint_path {checkpoint_path} --face {video_temp_path} --audio {audio_temp_path} --outfile {lipsync_output_path} --nosmooth')
        res_motion.append(res_motion_current)
        np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
    
    result = [
        os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
        os.path.join(save_dir, f"audio_{idx}_retri_1.mp4"),
        os.path.join(save_dir, f"audio_{idx}_retri_0.npz"),
        os.path.join(save_dir, f"audio_{idx}_retri_1.npz")
    ]
    return result


def init_class(module_name, class_name, config, **kwargs):
    module = importlib.import_module(module_name)
    model_class = getattr(module, class_name)
    instance = model_class(config, **kwargs)
    return instance


def seed_everything(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
       

def prepare_all(yaml_name):
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default=yaml_name)
    parser.add_argument("--debug", action="store_true", help="Enable debugging mode")
    parser.add_argument('overrides', nargs=argparse.REMAINDER)
    args = parser.parse_args()
    if args.config.endswith(".yaml"):
        config = OmegaConf.load(args.config)
        config.exp_name = args.config.split("/")[-1][:-5]
    else:
        raise ValueError("Unsupported config file format. Only .yaml files are allowed.")
    save_dir = os.path.join(config.output_dir, config.exp_name)
    os.makedirs(save_dir, exist_ok=True)
    return config


def save_first_10_seconds(video_path, output_path="./save_video.mp4", max_length=512):
    if os.path.exists(output_path):
        os.remove(output_path)
        
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        return

    fps = int(cap.get(cv2.CAP_PROP_FPS))
    original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # Calculate the aspect ratio and resize dimensions
    if original_width >= original_height:
        new_width = max_length
        new_height = int(original_height * (max_length / original_width))
    else:
        new_height = max_length
        new_width = int(original_width * (max_length / original_height))

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path.replace(".mp4", "_fps.mp4"), fourcc, fps, (new_width, new_height))

    frames_to_save = fps * 20
    frame_count = 0
    
    while cap.isOpened() and frame_count < frames_to_save:
        ret, frame = cap.read()
        if not ret:
            break
        # Resize the frame while keeping the aspect ratio
        resized_frame = cv2.resize(frame, (new_width, new_height))
        # resized_frame = frame
        out.write(resized_frame)
        frame_count += 1

    cap.release()
    out.release()
    command = [
        'ffmpeg',
        '-i', output_path.replace(".mp4", "_fps.mp4"),
        '-vf', 'minterpolate=fps=30:mi_mode=mci:mc_mode=aobmc:vsbmc=1',
        output_path
    ]
    subprocess.run(command)
    os.remove(output_path.replace(".mp4", "_fps.mp4"))


character_name_to_yaml = {
  "speaker8_jjRWaMCWs44_00-00-30.16_00-00-33.32.mp4": "./datasets/data_json/youtube_test/speaker8.json",
  "speaker7_iuYlGRnC7J8_00-00-0.00_00-00-3.25.mp4": "./datasets/data_json/youtube_test/speaker7.json",
  "speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4": "./datasets/data_json/youtube_test/speaker9.json",
  "1wrQ6Msp7wM_00-00-39.69_00-00-45.68.mp4": "./datasets/data_json/youtube_test/speaker1.json",
  "101099-00_18_09-00_18_19.mp4": "./datasets/data_json/show_oliver_test/Stupid_Watergate_-_Last_Week_Tonight_with_John_Oliver_HBO-FVFdsl29s_Q.mkv.json",
}

@spaces.GPU(duration=200) 
def tango(audio_path, character_name, seed, create_graph=False, video_folder_path=None):
    os.system("rm -r ./outputs/")
    cfg = prepare_all("./configs/gradio.yaml")
    cfg.seed = seed
    seed_everything(cfg.seed)
    experiment_ckpt_dir = experiment_log_dir = os.path.join(cfg.output_dir, cfg.exp_name)
    saved_audio_path = "./saved_audio.wav"
    sample_rate, audio_waveform = audio_path 
    sf.write(saved_audio_path, audio_waveform, sample_rate)

    audio_waveform, sample_rate = librosa.load(saved_audio_path)
    # print(audio_waveform.shape)
    resampled_audio = librosa.resample(audio_waveform, orig_sr=sample_rate, target_sr=16000)
    required_length = int(16000 * (128 / 30)) * 2
    resampled_audio = resampled_audio[:required_length]
    sf.write(saved_audio_path, resampled_audio, 16000)
    audio_path = saved_audio_path
    
    yaml_name = character_name_to_yaml.get(character_name.split("/")[-1], "./datasets/data_json/youtube_test/speaker1.json")
    cfg.data.test_meta_paths = yaml_name
    print(yaml_name, character_name.split("/")[-1])

    if character_name.split("/")[-1] not in character_name_to_yaml.keys():
        create_graph=True
        # load video, and save it to "./save_video.mp4 for the first 20s of the video."
        os.makedirs("./outputs/tmpvideo/", exist_ok=True)
        save_first_10_seconds(character_name, "./outputs/tmpvideo/save_video.mp4")

    if create_graph:
        video_folder_path = "./outputs/tmpvideo/"
        data_save_path = "./outputs/tmpdata/"
        json_save_path = "./outputs/save_video.json"
        graph_save_path = "./outputs/save_video.pkl"
        os.system(f"cd ./SMPLer-X/ && python app.py --video_folder_path .{video_folder_path} --data_save_path .{data_save_path} --json_save_path .{json_save_path} && cd ..")
        print(f"cd ./SMPLer-X/ && python app.py --video_folder_path .{video_folder_path} --data_save_path .{data_save_path} --json_save_path .{json_save_path} && cd ..")
        os.system(f"python ./create_graph.py --json_save_path {json_save_path} --graph_save_path {graph_save_path}") 
        cfg.data.test_meta_paths = json_save_path
        gc.collect()
        torch.cuda.empty_cache()
        

    smplx_model = smplx.create(
        "./emage/smplx_models/", 
        model_type='smplx',
        gender='NEUTRAL_2020', 
        use_face_contour=False,
        num_betas=300,
        num_expression_coeffs=100, 
        ext='npz',
        use_pca=False,
    )
    model = init_class(cfg.model.name_pyfile, cfg.model.class_name, cfg)
    for param in model.parameters():
        param.requires_grad = False
    model.smplx_model = smplx_model
    model.get_motion_reps = get_motion_reps_tensor
    
    local_rank = 0  
    torch.cuda.set_device(local_rank)
    device = torch.device("cuda", local_rank)

    smplx_model = smplx_model.to(device).eval()
    model = model.to(device)
    model.smplx_model = model.smplx_model.to(device)

    checkpoint_path = "./datasets/cached_ckpts/ckpt.pth"
    checkpoint = torch.load(checkpoint_path)
    state_dict = checkpoint['model_state_dict']
    new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
    model.load_state_dict(new_state_dict, strict=False)
    
    test_path = os.path.join(experiment_ckpt_dir, f"test_{0}")
    os.makedirs(test_path, exist_ok=True)
    result = test_fn(model, device, 0, cfg.data.test_meta_paths, test_path, cfg, audio_path, create_graph=create_graph)
    gc.collect()
    torch.cuda.empty_cache()
    return result


examples_audio = [
    ["./datasets/cached_audio/example_male_voice_9_seconds.wav"],
    ["./datasets/cached_audio/example_female_voice_9_seconds.wav"],
]

examples_video = [
    ["./datasets/cached_audio/speaker8_jjRWaMCWs44_00-00-30.16_00-00-33.32.mp4"],
    ["./datasets/cached_audio/speaker7_iuYlGRnC7J8_00-00-0.00_00-00-3.25.mp4"],
    ["./datasets/cached_audio/speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4"],
    ["./datasets/cached_audio/1wrQ6Msp7wM_00-00-39.69_00-00-45.68.mp4"],
    ["./datasets/cached_audio/101099-00_18_09-00_18_19.mp4"],
]

combined_examples = [
    ["./datasets/cached_audio/example_female_voice_9_seconds.wav", "./datasets/cached_audio/female_test_V1.mp4", 2024],
    # ["./datasets/cached_audio/example_female_voice_9_seconds.wav", "./datasets/cached_audio/101099-00_18_09-00_18_19.mp4", 2024],
]


def make_demo():
    with gr.Blocks(analytics_enabled=False) as Interface:
        gr.Markdown(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
          <div>
            <h1>TANGO</h1>
            <span>Generating full-body talking videos from audio and reference video</span>
            <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
              <a href='https://h-liu1997.github.io/'>Haiyang Liu</a>, \
              <a href='https://yangxingchao.github.io/'>Xingchao Yang</a>, \
              <a href=''>Tomoya Akiyama</a>, \
              <a href='https://sky24h.github.io/'> Yuantian Huang</a>, \
              <a href=''>Qiaoge Li</a>, \
              <a href='https://www.tut.ac.jp/english/university/faculty/cs/164.html'>Shigeru Kuriyama</a>, \
              <a href='https://taketomitakafumi.sakura.ne.jp/web/en/'>Takafumi Taketomi</a>\
            </h2>
            <br>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
              <a href="https://arxiv.org/abs/2410.04221"><img src="https://img.shields.io/badge/arXiv-2410.04221-blue"></a>
              &nbsp;
              <a href="https://pantomatrix.github.io/TANGO/"><img src="https://img.shields.io/badge/Project_Page-TANGO-orange" alt="Project Page"></a>
              &nbsp;
              <a href="https://github.com/CyberAgentAILab/TANGO"><img src="https://img.shields.io/badge/Github-Code-green"></a>
              &nbsp;
              <a href="https://github.com/CyberAgentAILab/TANGO"><img src="https://img.shields.io/github/stars/CyberAgentAILab/TANGO
              "></a>
            </div>
          </div>
        </div>
        """
        )
        
        # Create a gallery with 5 videos
        with gr.Row():
            video1 = gr.Video(value="./datasets/cached_audio/demo1.mp4", label="Demo 0", watermark="./datasets/watermark.png")
            video2 = gr.Video(value="./datasets/cached_audio/demo2.mp4", label="Demo 1", watermark="./datasets/watermark.png")
            video3 = gr.Video(value="./datasets/cached_audio/demo3.mp4", label="Demo 2", watermark="./datasets/watermark.png")
            video4 = gr.Video(value="./datasets/cached_audio/demo4.mp4", label="Demo 3", watermark="./datasets/watermark.png")
            video5 = gr.Video(value="./datasets/cached_audio/demo5.mp4", label="Demo 4", watermark="./datasets/watermark.png")
        with gr.Row():
            video1 = gr.Video(value="./datasets/cached_audio/demo6.mp4", label="Demo 5", watermark="./datasets/watermark.png")
            video2 = gr.Video(value="./datasets/cached_audio/demo0.mp4", label="Demo 6", watermark="./datasets/watermark.png")
            video3 = gr.Video(value="./datasets/cached_audio/demo7.mp4", label="Demo 7", watermark="./datasets/watermark.png")
            video4 = gr.Video(value="./datasets/cached_audio/demo8.mp4", label="Demo 8", watermark="./datasets/watermark.png")
            video5 = gr.Video(value="./datasets/cached_audio/demo9.mp4", label="Demo 9", watermark="./datasets/watermark.png")
        
        with gr.Row():
            gr.Markdown(
              """
              <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
              This is an open-source project supported by Hugging Face's free L40S GPU. Runtime is limited, so it operates in low-quality mode. Some generated results from high-quality mode are shown above.
              <br>
              News:
              <br>
              [10/15]: Add watermark, fix bugs on custom character by downgrades to py3.9
              <br>
              [10/14]: Hugging face supports free L40S GPU for this project now!
              </div>
              """
            )

        with gr.Row():
            with gr.Column(scale=4):
                video_output_1 = gr.Video(label="Generated video - 1",
                            interactive=False,
                            autoplay=False,
                            loop=False,
                            show_share_button=True,
                            watermark="./datasets/watermark.png")
            with gr.Column(scale=4):
                video_output_2 = gr.Video(label="Generated video - 2",
                            interactive=False,
                            autoplay=False,
                            loop=False,
                            show_share_button=True,
                            watermark="./datasets/watermark.png")
            with gr.Column(scale=1):
                file_output_1 = gr.File(label="Download 3D Motion and Visualize in Blender")
                file_output_2 = gr.File(label="Download 3D Motion and Visualize in Blender")
                gr.Markdown("""
                <div style="display: flex; justify-content: center; align-items: center; text-align: left;">
                Details of the low-quality mode:
                <br>
                1. lower resolution, video resized as long-side 512 and keep aspect ratio.
                <br>
                2. subgraph instead of full-graph, causing noticeable "frame jumps". 
                <br>
                3. only use the first 8s of your input audio.
                <br>
                4. only use the first 20s of your input video for custom character. if you custom character, it will only generate one video result without "smoothing" for saving time.
                <br>
                5. use open-source tools like SMPLerX-s-model, Wav2Lip, and FiLM for faster processing. 
                <br>
                <br>
                Feel free to open an issue on GitHub or contact the authors if this does not meet your needs.
                </div>
                """)
            
        with gr.Row():
            with gr.Column(scale=1):
                audio_input = gr.Audio(label="Upload your audio")
                seed_input = gr.Number(label="Seed", value=2024, interactive=True)
            with gr.Column(scale=2):
                gr.Examples(
                    examples=examples_audio,
                    inputs=[audio_input],
                    outputs=[video_output_1, video_output_2, file_output_1, file_output_2],
                    label="Select existing Audio examples",
                    cache_examples=False
                )
            with gr.Column(scale=1):
                video_input = gr.Video(label="Your Character", elem_classes="video")
            with gr.Column(scale=2):
                gr.Examples(
                    examples=examples_video,
                    inputs=[video_input],  # Correctly refer to video input
                    outputs=[video_output_1, video_output_2, file_output_1, file_output_2],
                    label="Character Examples",
                    cache_examples=False
                )
        
        # Fourth row: Generate video button
        with gr.Row():
            run_button = gr.Button("Generate Video")
        
        # Define button click behavior
        run_button.click(
            fn=tango,
            inputs=[audio_input, video_input, seed_input],
            outputs=[video_output_1, video_output_2, file_output_1, file_output_2]
        )

        with gr.Row():
            with gr.Column(scale=4):
                gr.Examples(
                    examples=combined_examples,
                    inputs=[audio_input, video_input, seed_input],  # Both audio and video as inputs
                    outputs=[video_output_1, video_output_2, file_output_1, file_output_2],
                    fn=tango,  # Function that processes both audio and video inputs
                    label="Select Combined Audio and Video Examples (Cached)",
                    cache_examples=True
                )

    return Interface
      
if __name__ == "__main__":
    os.environ["MASTER_ADDR"]='127.0.0.1'
    os.environ["MASTER_PORT"]='8675'
    
    demo = make_demo()
    demo.launch(share=True)