File size: 4,868 Bytes
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import logging
import glob
from tqdm import tqdm
import numpy as np
import torch
import cv2


class FaceDetector(object):
    """An abstract class representing a face detector.

    Any other face detection implementation must subclass it. All subclasses
    must implement ``detect_from_image``, that return a list of detected
    bounding boxes. Optionally, for speed considerations detect from path is
    recommended.
    """

    def __init__(self, device, verbose):
        self.device = device
        self.verbose = verbose

        if verbose:
            if 'cpu' in device:
                logger = logging.getLogger(__name__)
                logger.warning("Detection running on CPU, this may be potentially slow.")

        if 'cpu' not in device and 'cuda' not in device:
            if verbose:
                logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
            raise ValueError

    def detect_from_image(self, tensor_or_path):
        """Detects faces in a given image.

        This function detects the faces present in a provided BGR(usually)
        image. The input can be either the image itself or the path to it.

        Arguments:
            tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
            to an image or the image itself.

        Example::

            >>> path_to_image = 'data/image_01.jpg'
            ...   detected_faces = detect_from_image(path_to_image)
            [A list of bounding boxes (x1, y1, x2, y2)]
            >>> image = cv2.imread(path_to_image)
            ...   detected_faces = detect_from_image(image)
            [A list of bounding boxes (x1, y1, x2, y2)]

        """
        raise NotImplementedError

    def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
        """Detects faces from all the images present in a given directory.

        Arguments:
            path {string} -- a string containing a path that points to the folder containing the images

        Keyword Arguments:
            extensions {list} -- list of string containing the extensions to be
            consider in the following format: ``.extension_name`` (default:
            {['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
            folder recursively (default: {False}) show_progress_bar {bool} --
            display a progressbar (default: {True})

        Example:
        >>> directory = 'data'
        ...   detected_faces = detect_from_directory(directory)
        {A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}

        """
        if self.verbose:
            logger = logging.getLogger(__name__)

        if len(extensions) == 0:
            if self.verbose:
                logger.error("Expected at list one extension, but none was received.")
            raise ValueError

        if self.verbose:
            logger.info("Constructing the list of images.")
        additional_pattern = '/**/*' if recursive else '/*'
        files = []
        for extension in extensions:
            files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))

        if self.verbose:
            logger.info("Finished searching for images. %s images found", len(files))
            logger.info("Preparing to run the detection.")

        predictions = {}
        for image_path in tqdm(files, disable=not show_progress_bar):
            if self.verbose:
                logger.info("Running the face detector on image: %s", image_path)
            predictions[image_path] = self.detect_from_image(image_path)

        if self.verbose:
            logger.info("The detector was successfully run on all %s images", len(files))

        return predictions

    @property
    def reference_scale(self):
        raise NotImplementedError

    @property
    def reference_x_shift(self):
        raise NotImplementedError

    @property
    def reference_y_shift(self):
        raise NotImplementedError

    @staticmethod
    def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
        """Convert path (represented as a string) or torch.tensor to a numpy.ndarray

        Arguments:
            tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
        """
        if isinstance(tensor_or_path, str):
            return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
        elif torch.is_tensor(tensor_or_path):
            # Call cpu in case its coming from cuda
            return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
        elif isinstance(tensor_or_path, np.ndarray):
            return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
        else:
            raise TypeError